Influence of exposure conditions on helium transport and bubble growth in tungsten

Abstract Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the n...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rémi Delaporte-Mathurin, Mykola Ialovega, Etienne A. Hodille, Jonathan Mougenot, Yann Charles, Elodie Bernard, Céline Martin, Christian Grisolia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7853f4caba414b00b2975034239b6a4c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7853f4caba414b00b2975034239b6a4c
record_format dspace
spelling oai:doaj.org-article:7853f4caba414b00b2975034239b6a4c2021-12-02T16:17:33ZInfluence of exposure conditions on helium transport and bubble growth in tungsten10.1038/s41598-021-93542-92045-2322https://doaj.org/article/7853f4caba414b00b2975034239b6a4c2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93542-9https://doaj.org/toc/2045-2322Abstract Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from $$10^{17}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 10 17 m - 2 s - 1 to $$5 \times 10^{21}\, {\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately $$4 \times 10^{8}$$ 4 × 10 8 He at $$5 \times 10^{21}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . After 1 h of exposure, the helium inventory varies from $$5 \times 10^{16} \,{\text{m}^{-2}}$$ 5 × 10 16 m - 2 at low flux and high temperature to $$10^{25} \,{\text{m}^{-2}}$$ 10 25 m - 2 at high flux and low temperature. The bubbles inventory varies from $$5 \times 10^{12}$$ 5 × 10 12 bubbles m $$^{-2}$$ - 2 to $$2 \times 10^{19}$$ 2 × 10 19 bubbles m $$^{-2}$$ - 2 . Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.Rémi Delaporte-MathurinMykola IalovegaEtienne A. HodilleJonathan MougenotYann CharlesElodie BernardCéline MartinChristian GrisoliaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rémi Delaporte-Mathurin
Mykola Ialovega
Etienne A. Hodille
Jonathan Mougenot
Yann Charles
Elodie Bernard
Céline Martin
Christian Grisolia
Influence of exposure conditions on helium transport and bubble growth in tungsten
description Abstract Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from $$10^{17}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 10 17 m - 2 s - 1 to $$5 \times 10^{21}\, {\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately $$4 \times 10^{8}$$ 4 × 10 8 He at $$5 \times 10^{21}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . After 1 h of exposure, the helium inventory varies from $$5 \times 10^{16} \,{\text{m}^{-2}}$$ 5 × 10 16 m - 2 at low flux and high temperature to $$10^{25} \,{\text{m}^{-2}}$$ 10 25 m - 2 at high flux and low temperature. The bubbles inventory varies from $$5 \times 10^{12}$$ 5 × 10 12 bubbles m $$^{-2}$$ - 2 to $$2 \times 10^{19}$$ 2 × 10 19 bubbles m $$^{-2}$$ - 2 . Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.
format article
author Rémi Delaporte-Mathurin
Mykola Ialovega
Etienne A. Hodille
Jonathan Mougenot
Yann Charles
Elodie Bernard
Céline Martin
Christian Grisolia
author_facet Rémi Delaporte-Mathurin
Mykola Ialovega
Etienne A. Hodille
Jonathan Mougenot
Yann Charles
Elodie Bernard
Céline Martin
Christian Grisolia
author_sort Rémi Delaporte-Mathurin
title Influence of exposure conditions on helium transport and bubble growth in tungsten
title_short Influence of exposure conditions on helium transport and bubble growth in tungsten
title_full Influence of exposure conditions on helium transport and bubble growth in tungsten
title_fullStr Influence of exposure conditions on helium transport and bubble growth in tungsten
title_full_unstemmed Influence of exposure conditions on helium transport and bubble growth in tungsten
title_sort influence of exposure conditions on helium transport and bubble growth in tungsten
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7853f4caba414b00b2975034239b6a4c
work_keys_str_mv AT remidelaportemathurin influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT mykolaialovega influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT etienneahodille influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT jonathanmougenot influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT yanncharles influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT elodiebernard influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT celinemartin influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
AT christiangrisolia influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten
_version_ 1718384238132199424