Influence of exposure conditions on helium transport and bubble growth in tungsten
Abstract Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the n...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7853f4caba414b00b2975034239b6a4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7853f4caba414b00b2975034239b6a4c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7853f4caba414b00b2975034239b6a4c2021-12-02T16:17:33ZInfluence of exposure conditions on helium transport and bubble growth in tungsten10.1038/s41598-021-93542-92045-2322https://doaj.org/article/7853f4caba414b00b2975034239b6a4c2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93542-9https://doaj.org/toc/2045-2322Abstract Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from $$10^{17}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 10 17 m - 2 s - 1 to $$5 \times 10^{21}\, {\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately $$4 \times 10^{8}$$ 4 × 10 8 He at $$5 \times 10^{21}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . After 1 h of exposure, the helium inventory varies from $$5 \times 10^{16} \,{\text{m}^{-2}}$$ 5 × 10 16 m - 2 at low flux and high temperature to $$10^{25} \,{\text{m}^{-2}}$$ 10 25 m - 2 at high flux and low temperature. The bubbles inventory varies from $$5 \times 10^{12}$$ 5 × 10 12 bubbles m $$^{-2}$$ - 2 to $$2 \times 10^{19}$$ 2 × 10 19 bubbles m $$^{-2}$$ - 2 . Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.Rémi Delaporte-MathurinMykola IalovegaEtienne A. HodilleJonathan MougenotYann CharlesElodie BernardCéline MartinChristian GrisoliaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Rémi Delaporte-Mathurin Mykola Ialovega Etienne A. Hodille Jonathan Mougenot Yann Charles Elodie Bernard Céline Martin Christian Grisolia Influence of exposure conditions on helium transport and bubble growth in tungsten |
description |
Abstract Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from $$10^{17}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 10 17 m - 2 s - 1 to $$5 \times 10^{21}\, {\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately $$4 \times 10^{8}$$ 4 × 10 8 He at $$5 \times 10^{21}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . After 1 h of exposure, the helium inventory varies from $$5 \times 10^{16} \,{\text{m}^{-2}}$$ 5 × 10 16 m - 2 at low flux and high temperature to $$10^{25} \,{\text{m}^{-2}}$$ 10 25 m - 2 at high flux and low temperature. The bubbles inventory varies from $$5 \times 10^{12}$$ 5 × 10 12 bubbles m $$^{-2}$$ - 2 to $$2 \times 10^{19}$$ 2 × 10 19 bubbles m $$^{-2}$$ - 2 . Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments. |
format |
article |
author |
Rémi Delaporte-Mathurin Mykola Ialovega Etienne A. Hodille Jonathan Mougenot Yann Charles Elodie Bernard Céline Martin Christian Grisolia |
author_facet |
Rémi Delaporte-Mathurin Mykola Ialovega Etienne A. Hodille Jonathan Mougenot Yann Charles Elodie Bernard Céline Martin Christian Grisolia |
author_sort |
Rémi Delaporte-Mathurin |
title |
Influence of exposure conditions on helium transport and bubble growth in tungsten |
title_short |
Influence of exposure conditions on helium transport and bubble growth in tungsten |
title_full |
Influence of exposure conditions on helium transport and bubble growth in tungsten |
title_fullStr |
Influence of exposure conditions on helium transport and bubble growth in tungsten |
title_full_unstemmed |
Influence of exposure conditions on helium transport and bubble growth in tungsten |
title_sort |
influence of exposure conditions on helium transport and bubble growth in tungsten |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7853f4caba414b00b2975034239b6a4c |
work_keys_str_mv |
AT remidelaportemathurin influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT mykolaialovega influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT etienneahodille influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT jonathanmougenot influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT yanncharles influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT elodiebernard influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT celinemartin influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten AT christiangrisolia influenceofexposureconditionsonheliumtransportandbubblegrowthintungsten |
_version_ |
1718384238132199424 |