Double transition metal-containing M2TiAlC2 o-MAX phases as Li-ion batteries anodes: a theoretical screening

Here, thermodynamic stability and lithium storage properties of double transition metal M2TiAlC2 o-MAX phases (M = Cr, V, Mo, Nb, Ta, Hf, Zr, Sc, Y, La) are theoretically investigated by density functional theory (DFT) calculation. M2TiAlC2 with a larger M atomic radius shows larger interlayer space...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peng Xiao, Na Jin, Zifeng Lin
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2021
Materias:
Acceso en línea:https://doaj.org/article/7856fbf02756497ba0be1e0065c9cfd3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Here, thermodynamic stability and lithium storage properties of double transition metal M2TiAlC2 o-MAX phases (M = Cr, V, Mo, Nb, Ta, Hf, Zr, Sc, Y, La) are theoretically investigated by density functional theory (DFT) calculation. M2TiAlC2 with a larger M atomic radius shows larger interlayer space that may benefit the Li-ion intercalation. A promising theoretical capacity of 276.87 mAh g-1 is predicted for Sc2TiAlC2. The low Li-ion diffusion barriers (0.57–0.64 eV) for M2TiAlC2 indicate the possibility to achieve fast Li-ion diffusion that is crucial for designing high-power batteries. This work provides opportunities to explore MAX phases as promising Li-ion storage materials.