Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach

Abstract Titanium dioxide (TiO2) has a strong photocatalytic activity in the ultra-violet part of the spectrum combined with excellent chemical stability and abundance. However, its photocatalytic efficiency is prohibited by limited absorption within the visible range derived from its wide band gap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Petros-Panagis Filippatos, Anastasia Soultati, Nikolaos Kelaidis, Christos Petaroudis, Anastasia-Antonia Alivisatou, Charalampos Drivas, Stella Kennou, Eleni Agapaki, Georgios Charalampidis, Abd. Rashid bin Mohd Yusoff, Nektarios N. Lathiotakis, Athanassios G. Coutsolelos, Dimitris Davazoglou, Maria Vasilopoulou, Alexander Chroneos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/78777c6f328647118788407e7938595c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Titanium dioxide (TiO2) has a strong photocatalytic activity in the ultra-violet part of the spectrum combined with excellent chemical stability and abundance. However, its photocatalytic efficiency is prohibited by limited absorption within the visible range derived from its wide band gap value and the presence of charge trapping states located at the band edges, which act as electron–hole recombination centers. Herein, we modify the band gap and improve the optical properties of TiO2 via co-doping with hydrogen and halogen. The present density functional theory (DFT) calculations indicate that hydrogen is incorporated in interstitial sites while fluorine and chlorine can be inserted both as interstitial and oxygen substitutional defects. To investigate the synergy of dopants in TiO2 experimental characterization techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray and ultra-violet photoelectron spectroscopy (XPS/UPS), UV–Vis absorption and scanning electron microscopy (SEM) measurements, have been conducted. The observations suggest that the oxide’s band gap is reduced upon halogen doping, particularly for chlorine, making this material promising for energy harvesting devices. The studies on hydrogen production ability of these materials support the enhanced hydrogen production rates for chlorine doped (Cl:TiO2) and hydrogenated (H:TiO2) oxides compared to the pristine TiO2 reference.