Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank.
Colorectal cancer risk stratification is crucial to improve screening and risk-reducing recommendations, and consequently do better than a one-size-fits-all screening regimen. Current screening guidelines in the UK, USA and Australia focus solely on family history and age for risk prediction, even t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/788e69b5d3f84bf098ab266ef4cf3d72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:788e69b5d3f84bf098ab266ef4cf3d72 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:788e69b5d3f84bf098ab266ef4cf3d722021-12-02T20:08:14ZAbility of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank.1932-620310.1371/journal.pone.0251469https://doaj.org/article/788e69b5d3f84bf098ab266ef4cf3d722021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0251469https://doaj.org/toc/1932-6203Colorectal cancer risk stratification is crucial to improve screening and risk-reducing recommendations, and consequently do better than a one-size-fits-all screening regimen. Current screening guidelines in the UK, USA and Australia focus solely on family history and age for risk prediction, even though the vast majority of the population do not have any family history. We investigated adding a polygenic risk score based on 45 single-nucleotide polymorphisms to a family history model (combined model) to quantify how it improves the stratification and discriminatory performance of 10-year risk and full lifetime risk using a prospective population-based cohort within the UK Biobank. For both 10-year and full lifetime risk, the combined model had a wider risk distribution compared with family history alone, resulting in improved risk stratification of nearly 2-fold between the top and bottom risk quintiles of the full lifetime risk model. Importantly, the combined model can identify people (n = 72,019) who do not have family history of colorectal cancer but have a predicted risk that is equivalent to having at least one affected first-degree relative (n = 44,950). We also confirmed previous findings by showing that the combined full lifetime risk model significantly improves discriminatory accuracy compared with a simple family history model 0.673 (95% CI 0.664-0.682) versus 0.666 (95% CI 0.657-0.675), p = 0.0065. Therefore, a combined polygenic risk score and first-degree family history model could be used to improve risk stratified population screening programs.Aviv GafniGillian S DiteErika Spaeth TuffRichard AllmanJohn L HopperPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0251469 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Aviv Gafni Gillian S Dite Erika Spaeth Tuff Richard Allman John L Hopper Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. |
description |
Colorectal cancer risk stratification is crucial to improve screening and risk-reducing recommendations, and consequently do better than a one-size-fits-all screening regimen. Current screening guidelines in the UK, USA and Australia focus solely on family history and age for risk prediction, even though the vast majority of the population do not have any family history. We investigated adding a polygenic risk score based on 45 single-nucleotide polymorphisms to a family history model (combined model) to quantify how it improves the stratification and discriminatory performance of 10-year risk and full lifetime risk using a prospective population-based cohort within the UK Biobank. For both 10-year and full lifetime risk, the combined model had a wider risk distribution compared with family history alone, resulting in improved risk stratification of nearly 2-fold between the top and bottom risk quintiles of the full lifetime risk model. Importantly, the combined model can identify people (n = 72,019) who do not have family history of colorectal cancer but have a predicted risk that is equivalent to having at least one affected first-degree relative (n = 44,950). We also confirmed previous findings by showing that the combined full lifetime risk model significantly improves discriminatory accuracy compared with a simple family history model 0.673 (95% CI 0.664-0.682) versus 0.666 (95% CI 0.657-0.675), p = 0.0065. Therefore, a combined polygenic risk score and first-degree family history model could be used to improve risk stratified population screening programs. |
format |
article |
author |
Aviv Gafni Gillian S Dite Erika Spaeth Tuff Richard Allman John L Hopper |
author_facet |
Aviv Gafni Gillian S Dite Erika Spaeth Tuff Richard Allman John L Hopper |
author_sort |
Aviv Gafni |
title |
Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. |
title_short |
Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. |
title_full |
Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. |
title_fullStr |
Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. |
title_full_unstemmed |
Ability of known colorectal cancer susceptibility SNPs to predict colorectal cancer risk: A cohort study within the UK Biobank. |
title_sort |
ability of known colorectal cancer susceptibility snps to predict colorectal cancer risk: a cohort study within the uk biobank. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/788e69b5d3f84bf098ab266ef4cf3d72 |
work_keys_str_mv |
AT avivgafni abilityofknowncolorectalcancersusceptibilitysnpstopredictcolorectalcancerriskacohortstudywithintheukbiobank AT gilliansdite abilityofknowncolorectalcancersusceptibilitysnpstopredictcolorectalcancerriskacohortstudywithintheukbiobank AT erikaspaethtuff abilityofknowncolorectalcancersusceptibilitysnpstopredictcolorectalcancerriskacohortstudywithintheukbiobank AT richardallman abilityofknowncolorectalcancersusceptibilitysnpstopredictcolorectalcancerriskacohortstudywithintheukbiobank AT johnlhopper abilityofknowncolorectalcancersusceptibilitysnpstopredictcolorectalcancerriskacohortstudywithintheukbiobank |
_version_ |
1718375190020227072 |