Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination with Process Signals in Resistance Spot Welding of Advanced High-Strength Steels
Resistance spot welding is an established joining process for the production of safety-relevant components in the automotive industry. Therefore, consecutive process monitoring is essential to meet the high quality requirements. Artificial neural networks can be used to evaluate the process paramete...
Guardado en:
Autores principales: | Bassel El-Sari, Max Biegler, Michael Rethmeier |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/789cb2fc227c460bb59592921b2aa342 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Investigation of Liquid Metal Embrittlement during Resistance Spot Welding of Martensitic Steel with Zn Jet Vapor-Deposited Coating
por: Vojtech Kucera, et al.
Publicado: (2021) -
Quantitative analysis of the solute redistribution and precipitate of Al–Mg–Si series alloys resistance spot welds after post–weld heat treatment
por: Yu Zhang, et al.
Publicado: (2021) -
Microstructure, texture and mechanical properties of a nickel-free high nitrogen duplex stainless steel processed through friction stir spot welding
por: S. Yousefian, et al.
Publicado: (2021) -
Effect of Post-Weld Heat Treatment on the Fatigue Behavior of Medium-Strength Carbon Steel Weldments
por: Byeong-Choon Goo
Publicado: (2021) -
Development of a new approach to resistance spot weld AW-7075 aluminum alloys for structural applications: an experimental study – Part 1
por: Pedro Bamberg, et al.
Publicado: (2021)