A zero inflated log-normal model for inference of sparse microbial association networks.
The advent of high-throughput metagenomic sequencing has prompted the development of efficient taxonomic profiling methods allowing to measure the presence, abundance and phylogeny of organisms in a wide range of environmental samples. Multivariate sequence-derived abundance data further has the pot...
Guardado en:
Autores principales: | Vincent Prost, Stéphane Gazut, Thomas Brüls |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78a53343eda847c2b92665a0743b75b5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene regulatory network inference from sparsely sampled noisy data
por: Atte Aalto, et al.
Publicado: (2020) -
Inference of causal networks from time-varying transcriptome data via sparse coding.
por: Kai Zhang, et al.
Publicado: (2012) -
Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions
por: Amirali Aghazadeh, et al.
Publicado: (2021) -
Mechanisms for log normal concentration distributions in the environment
por: August Andersson
Publicado: (2021) -
An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count outcomes
por: Mackenzie J. Edmondson, et al.
Publicado: (2021)