Properties of Certain Classes of Holomorphic Functions Related to Strongly Janowski Type Function
Most subclasses of univalent functions are characterized with functions that map open unit disc ∇ onto the right-half plane. This concept was later modified in the literature with those mappings that conformally map ∇ onto a circular domain. Many researchers were inspired with this modification, and...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78aa28caf893458d9fdf3661c2fd7a90 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Most subclasses of univalent functions are characterized with functions that map open unit disc ∇ onto the right-half plane. This concept was later modified in the literature with those mappings that conformally map ∇ onto a circular domain. Many researchers were inspired with this modification, and as such, several articles were written in this direction. On this note, we further modify this idea by relating certain subclasses of univalent functions with those that map ∇ onto a sector in the circular domain. As a result, conditions for univalence, radius results, growth rate, and several inclusion relations are obtained for these novel classes. Overall, many consequences of findings show the validity of our investigation. |
---|