Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations.
High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this directio...
Guardado en:
Autores principales: | Paul Richmond, Lars Buesing, Michele Giugliano, Eleni Vasilaki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78c4d4314a024d3c8c5eafcccbd88530 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses.
por: Eleni Vasilaki, et al.
Publicado: (2014) -
Measuring symmetry, asymmetry and randomness in neural network connectivity.
por: Umberto Esposito, et al.
Publicado: (2014) -
GPU-BSM: a GPU-based tool to map bisulfite-treated reads.
por: Andrea Manconi, et al.
Publicado: (2014) -
Learning Non-Parametric Surrogate Losses With Correlated Gradients
por: Seungdong Yoa, et al.
Publicado: (2021) -
FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
por: Andrea Tangherloni, et al.
Publicado: (2021)