Statistical and machine learning methods for analysis of multiplex protein data from a novel proximity extension assay in patients with ST-elevation myocardial infarction
Abstract Using data from patients with ST-elevation myocardial infarction (STEMI), we explored how machine learning methods can be used for analysing multiplex protein data obtained from proximity extension assays. Blood samples were obtained from 48 STEMI-patients at admission and after three month...
Guardado en:
Autores principales: | Emil Maag, Archana Kulasingam, Erik Lerkevang Grove, Kamilla Sofie Pedersen, Steen Dalby Kristensen, Anne-Mette Hvas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78ceba10a74a4ba4906cb33c355737e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping axon initial segment structure and function by multiplexed proximity biotinylation
por: Hamdan Hamdan, et al.
Publicado: (2020) -
COVID-19 mimicking ST-elevation myocardial infarction
por: Kamil Bujak, et al.
Publicado: (2020) -
Kounis Syndrome: Dexketoprofen-Associated ST-Elevation Myocardial Infarction
por: Aytekin Aksakal, et al.
Publicado: (2021) -
Filtering electrocardiogram: Music, math, and ST-elevation myocardial infarction
por: Emre K. Aslanger, et al.
Publicado: (2021) -
Use of the Thrombolysis in Myocardial Infarction Risk Index for Elderly Patients With ST-Segment Elevation Myocardial Infarction
por: Bingqi Fu, et al.
Publicado: (2021)