Genetic diversity and molecular evolution of human respiratory syncytial virus A and B
Abstract Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs fr...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78cf6a86bca74fe487bf5493117d7135 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:78cf6a86bca74fe487bf5493117d7135 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:78cf6a86bca74fe487bf5493117d71352021-12-02T16:07:04ZGenetic diversity and molecular evolution of human respiratory syncytial virus A and B10.1038/s41598-021-92435-12045-2322https://doaj.org/article/78cf6a86bca74fe487bf5493117d71352021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92435-1https://doaj.org/toc/2045-2322Abstract Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10–3 and 1.92 × 10–3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.Jie-Mei YuYuan-Hui FuXiang-Lei PengYan-Peng ZhengJin-Sheng HeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jie-Mei Yu Yuan-Hui Fu Xiang-Lei Peng Yan-Peng Zheng Jin-Sheng He Genetic diversity and molecular evolution of human respiratory syncytial virus A and B |
description |
Abstract Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10–3 and 1.92 × 10–3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection. |
format |
article |
author |
Jie-Mei Yu Yuan-Hui Fu Xiang-Lei Peng Yan-Peng Zheng Jin-Sheng He |
author_facet |
Jie-Mei Yu Yuan-Hui Fu Xiang-Lei Peng Yan-Peng Zheng Jin-Sheng He |
author_sort |
Jie-Mei Yu |
title |
Genetic diversity and molecular evolution of human respiratory syncytial virus A and B |
title_short |
Genetic diversity and molecular evolution of human respiratory syncytial virus A and B |
title_full |
Genetic diversity and molecular evolution of human respiratory syncytial virus A and B |
title_fullStr |
Genetic diversity and molecular evolution of human respiratory syncytial virus A and B |
title_full_unstemmed |
Genetic diversity and molecular evolution of human respiratory syncytial virus A and B |
title_sort |
genetic diversity and molecular evolution of human respiratory syncytial virus a and b |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/78cf6a86bca74fe487bf5493117d7135 |
work_keys_str_mv |
AT jiemeiyu geneticdiversityandmolecularevolutionofhumanrespiratorysyncytialvirusaandb AT yuanhuifu geneticdiversityandmolecularevolutionofhumanrespiratorysyncytialvirusaandb AT xiangleipeng geneticdiversityandmolecularevolutionofhumanrespiratorysyncytialvirusaandb AT yanpengzheng geneticdiversityandmolecularevolutionofhumanrespiratorysyncytialvirusaandb AT jinshenghe geneticdiversityandmolecularevolutionofhumanrespiratorysyncytialvirusaandb |
_version_ |
1718384783514402816 |