How can micelle systems be rebuilt by a heating process?
Miguel Adelino da Silva-Filho1, Scheyla Daniela Vieira da Silva Siqueira1, Larissa Bandeira Freire1, Ivonete Batista de Araújo2, Káttya Gyselle de Holanda e Silva2, Aldo da Cunha Medeiros3, Irami Araújo-Filho3, Anselmo Gomes de Oliveira4, Eryvaldo S&a...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78d23036daaf4362bf22f395a04b5e47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Miguel Adelino da Silva-Filho1, Scheyla Daniela Vieira da Silva Siqueira1, Larissa Bandeira Freire1, Ivonete Batista de Araújo2, Káttya Gyselle de Holanda e Silva2, Aldo da Cunha Medeiros3, Irami Araújo-Filho3, Anselmo Gomes de Oliveira4, Eryvaldo Sócrates Tabosa do Egito21Dispersed Systems Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil; 2Department of Pharmacy, UFRN, Natal, Rio Grande do Norte, Brazil; 3Department of Experimental Surgery, UFRN, Natal, Rio Grande do Norte, Brazil; 4Department of Drugs and Medicines, College of Pharmaceutical Sciences (UNESP), Araraquara, São Paulo, BrazilAbstract: The aim of this work was to evaluate how an aqueous micellar system containing Amphotericin B (AmB) and sodium deoxycholate (DOC) can be rebuilt after heating treatment. Also, a review of the literature on the physicochemical and biological properties of this new system was conducted. Heated (AmB-DOC-H) and unheated (AmB-DOC) micelles were then diluted at four different concentrations (50 mg · L-1, 5 mg · L-1, 0.5 mg · L-1, and 0.05 mg · L-1) to perform physicochemical studies and a pharmacotoxicity assay, in which two cell models were used for the in vitro experiments: red blood cells (RBC) from human donors and Candida parapsilosis (Cp). While potassium (K+) and hemoglobin leakage from RBC were the parameters used to evaluate acute and chronic toxicity, respectively, the efficacy of AmB-DOC and AmB-DOC-H were assessed by K+ leakage and cell survival rate from Cp. The spectral study revealed a slight change in the AmB-DOC aggregate peak from 327 nm to 323 nm, which is the peak for AmB-DOC-H. Although AmB-DOC and AmB-DOC-H exhibited different behavior for hemoglobin leakage, AmB-DOC produced higher leakage than AmB-DOC-H at high concentrations (from 5 mg ·L-1). For K+ leakage, both AmB-DOC and AmB-DOC-H showed a similar profile for both cell models, RBC and Cp (P < 0.05). AmB-DOC-H and AmB-DOC also revealed a similar profile of activity against Cp with an equivalent survival rate. In short, AmB-DOC-H showed much less toxicity than AmB-DOC, but remained as active as AmB-DOC against fungal cells. The results highlight the importance of this new procedure as a simple, inexpensive, and safe way to produce a new kind of micelle system for the treatment of systemic fungal infections.Keywords: micelles, nanotechnology, pre-heated amphotericin B, super-aggregates |
---|