Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks
Input decorrelation, expansion recoding and sparse activity have been proposed to separate overlapping activity patterns in feedforward networks. Here the authors use reduced and detailed spiking models to elucidate how synaptic connectivity affects the contribution of these mechanisms to pattern se...
Guardado en:
Autores principales: | N. Alex Cayco-Gajic, Claudia Clopath, R. Angus Silver |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78e100b190774f8594f77d5d611fed7f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Decorrelation of neural-network activity by inhibitory feedback.
por: Tom Tetzlaff, et al.
Publicado: (2012) -
Adaptation decorrelates shape representations
por: Marcelo G. Mattar, et al.
Publicado: (2018) -
Dendritic normalisation improves learning in sparsely connected artificial neural networks.
por: Alex D Bird, et al.
Publicado: (2021) -
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
por: Decebal Constantin Mocanu, et al.
Publicado: (2018) -
Structural discrimination of robustness in transcriptional feedforward loops for pattern formation.
por: Guillermo Rodrigo, et al.
Publicado: (2011)