Path planning for the Platonic solids on prescribed grids by edge-rolling.
The five Platonic solids-tetrahedron, cube, octahedron, dodecahedron, and icosahedron-have found many applications in mathematics, science, and art. Path planning for the Platonic solids had been suggested, but not validated, except for solving the rolling-cube puzzles for a cubic dice. We developed...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/78ee25d7238d406a9e3beebc275c070e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The five Platonic solids-tetrahedron, cube, octahedron, dodecahedron, and icosahedron-have found many applications in mathematics, science, and art. Path planning for the Platonic solids had been suggested, but not validated, except for solving the rolling-cube puzzles for a cubic dice. We developed a path-planning algorithm based on the breadth-first-search algorithm that generates a shortest path for each Platonic solid to reach a desired pose, including position and orientation, from an initial one on prescribed grids by edge-rolling. While it is straightforward to generate triangular and square grids, various methods exist for regular-pentagon tiling. We chose the Penrose tiling because it has five-fold symmetry. We discovered that a tetrahedron could achieve only one orientation for a particular position. |
---|