A solution to the learning dilemma for recurrent networks of spiking neurons
Bellec et al. present a mathematically founded approximation for gradient descent training of recurrent neural networks without backwards propagation in time. This enables biologically plausible training of spike-based neural network models with working memory and supports on-chip training of neurom...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7910940bc2a3480f8457777933723618 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7910940bc2a3480f8457777933723618 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7910940bc2a3480f84577779337236182021-12-02T17:01:30ZA solution to the learning dilemma for recurrent networks of spiking neurons10.1038/s41467-020-17236-y2041-1723https://doaj.org/article/7910940bc2a3480f84577779337236182020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17236-yhttps://doaj.org/toc/2041-1723Bellec et al. present a mathematically founded approximation for gradient descent training of recurrent neural networks without backwards propagation in time. This enables biologically plausible training of spike-based neural network models with working memory and supports on-chip training of neuromorphic hardware.Guillaume BellecFranz ScherrAnand SubramoneyElias HajekDarjan SalajRobert LegensteinWolfgang MaassNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-15 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Guillaume Bellec Franz Scherr Anand Subramoney Elias Hajek Darjan Salaj Robert Legenstein Wolfgang Maass A solution to the learning dilemma for recurrent networks of spiking neurons |
description |
Bellec et al. present a mathematically founded approximation for gradient descent training of recurrent neural networks without backwards propagation in time. This enables biologically plausible training of spike-based neural network models with working memory and supports on-chip training of neuromorphic hardware. |
format |
article |
author |
Guillaume Bellec Franz Scherr Anand Subramoney Elias Hajek Darjan Salaj Robert Legenstein Wolfgang Maass |
author_facet |
Guillaume Bellec Franz Scherr Anand Subramoney Elias Hajek Darjan Salaj Robert Legenstein Wolfgang Maass |
author_sort |
Guillaume Bellec |
title |
A solution to the learning dilemma for recurrent networks of spiking neurons |
title_short |
A solution to the learning dilemma for recurrent networks of spiking neurons |
title_full |
A solution to the learning dilemma for recurrent networks of spiking neurons |
title_fullStr |
A solution to the learning dilemma for recurrent networks of spiking neurons |
title_full_unstemmed |
A solution to the learning dilemma for recurrent networks of spiking neurons |
title_sort |
solution to the learning dilemma for recurrent networks of spiking neurons |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/7910940bc2a3480f8457777933723618 |
work_keys_str_mv |
AT guillaumebellec asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT franzscherr asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT anandsubramoney asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT eliashajek asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT darjansalaj asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT robertlegenstein asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT wolfgangmaass asolutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT guillaumebellec solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT franzscherr solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT anandsubramoney solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT eliashajek solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT darjansalaj solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT robertlegenstein solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons AT wolfgangmaass solutiontothelearningdilemmaforrecurrentnetworksofspikingneurons |
_version_ |
1718382090791157760 |