A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
Abstract Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/792b44f9bc9942699642a822cd3b0d25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|