A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
Abstract Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using...
Guardado en:
Autores principales: | Mohammad Peikari, Sherine Salama, Sharon Nofech-Mozes, Anne L. Martel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/792b44f9bc9942699642a822cd3b0d25 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Efficient Network Classification Based on Various-Widths Clustering and Semi-Supervised Stacking
por: Abdulmohsen Almalawi, et al.
Publicado: (2021) -
Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images
por: Gang Yu, et al.
Publicado: (2021) -
Overcoming the limitations of patch-based learning to detect cancer in whole slide images
por: Ozan Ciga, et al.
Publicado: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Kouhei Nakaji, et al.
Publicado: (2021)