A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification

Abstract Completely labeled pathology datasets are often challenging and time-consuming to obtain. Semi-supervised learning (SSL) methods are able to learn from fewer labeled data points with the help of a large number of unlabeled data points. In this paper, we investigated the possibility of using...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad Peikari, Sherine Salama, Sharon Nofech-Mozes, Anne L. Martel
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/792b44f9bc9942699642a822cd3b0d25
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!