Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study
Potassium permanganate (KMnO4) is a dominant ethylene (C2H4)-scavenger extensively used in fresh horticultural commodities, mainly in climacteric fruit, to prolong their shelf life. This material has been traditionally utilized as a C2H4-permeable sachet for inclusion into packages of produces. New...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/792cdc7df3e649d5af43e3b8caf59d27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:792cdc7df3e649d5af43e3b8caf59d27 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:792cdc7df3e649d5af43e3b8caf59d272021-11-24T04:24:34ZPreparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study0142-941810.1016/j.polymertesting.2020.106934https://doaj.org/article/792cdc7df3e649d5af43e3b8caf59d272021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0142941820321632https://doaj.org/toc/0142-9418Potassium permanganate (KMnO4) is a dominant ethylene (C2H4)-scavenger extensively used in fresh horticultural commodities, mainly in climacteric fruit, to prolong their shelf life. This material has been traditionally utilized as a C2H4-permeable sachet for inclusion into packages of produces. New formulation strategies are required in polymeric materials to develop nanocomposites with ethylene scavenging potential, as well as good barrier and mechanical properties. This work involved preparation and optimization of novel interesting nanocomposites based on polyolefin elastomer (POE) comprising impregnated nanoparticles (nanosilica (NS) and nanoclay (NC)) with KMnO4 via the response surface methodology (RSM). Regression models were developed for water vapor permeability (WVP), ethylene absorbency (EA), and mechanical properties as a function of concentrations of independent variables (POE-g-MAH (0–3%), NS (0–1.5%), NC (0–2%)). According to Field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis results, both NS and NC were fully dispersed in the POE matrix. The prepared nanocomposites demonstrated enhanced mechanical properties, larger EA, and lower WVP than neat POE film did. Ethylene absorption capacity increased at higher concentrations of impregnated nanoparticles due to their higher KMnO4 concentration. In addition, the optimized nanocomposite films were shown to extend the shelf life of bananas up to 15 days at ambient conditions.Arezoo EbrahimiMaryam Zabihzadeh KhajaviAmir M. MortazavianHassan Asilian-MahabadiShahin RafieeMehdi FarhoodiShervin AhmadiElsevierarticlePotassium permanganateEthylene scavengersWater vapor permeabilityNanosilicaNanoclayPolyolefin elastomerPolymers and polymer manufactureTP1080-1185ENPolymer Testing, Vol 93, Iss , Pp 106934- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Potassium permanganate Ethylene scavengers Water vapor permeability Nanosilica Nanoclay Polyolefin elastomer Polymers and polymer manufacture TP1080-1185 |
spellingShingle |
Potassium permanganate Ethylene scavengers Water vapor permeability Nanosilica Nanoclay Polyolefin elastomer Polymers and polymer manufacture TP1080-1185 Arezoo Ebrahimi Maryam Zabihzadeh Khajavi Amir M. Mortazavian Hassan Asilian-Mahabadi Shahin Rafiee Mehdi Farhoodi Shervin Ahmadi Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study |
description |
Potassium permanganate (KMnO4) is a dominant ethylene (C2H4)-scavenger extensively used in fresh horticultural commodities, mainly in climacteric fruit, to prolong their shelf life. This material has been traditionally utilized as a C2H4-permeable sachet for inclusion into packages of produces. New formulation strategies are required in polymeric materials to develop nanocomposites with ethylene scavenging potential, as well as good barrier and mechanical properties. This work involved preparation and optimization of novel interesting nanocomposites based on polyolefin elastomer (POE) comprising impregnated nanoparticles (nanosilica (NS) and nanoclay (NC)) with KMnO4 via the response surface methodology (RSM). Regression models were developed for water vapor permeability (WVP), ethylene absorbency (EA), and mechanical properties as a function of concentrations of independent variables (POE-g-MAH (0–3%), NS (0–1.5%), NC (0–2%)). According to Field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis results, both NS and NC were fully dispersed in the POE matrix. The prepared nanocomposites demonstrated enhanced mechanical properties, larger EA, and lower WVP than neat POE film did. Ethylene absorption capacity increased at higher concentrations of impregnated nanoparticles due to their higher KMnO4 concentration. In addition, the optimized nanocomposite films were shown to extend the shelf life of bananas up to 15 days at ambient conditions. |
format |
article |
author |
Arezoo Ebrahimi Maryam Zabihzadeh Khajavi Amir M. Mortazavian Hassan Asilian-Mahabadi Shahin Rafiee Mehdi Farhoodi Shervin Ahmadi |
author_facet |
Arezoo Ebrahimi Maryam Zabihzadeh Khajavi Amir M. Mortazavian Hassan Asilian-Mahabadi Shahin Rafiee Mehdi Farhoodi Shervin Ahmadi |
author_sort |
Arezoo Ebrahimi |
title |
Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study |
title_short |
Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study |
title_full |
Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study |
title_fullStr |
Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study |
title_full_unstemmed |
Preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: An optimization study |
title_sort |
preparation of novel nano–based films impregnated by potassium permanganate as ethylene scavengers: an optimization study |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/792cdc7df3e649d5af43e3b8caf59d27 |
work_keys_str_mv |
AT arezooebrahimi preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy AT maryamzabihzadehkhajavi preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy AT amirmmortazavian preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy AT hassanasilianmahabadi preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy AT shahinrafiee preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy AT mehdifarhoodi preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy AT shervinahmadi preparationofnovelnanobasedfilmsimpregnatedbypotassiumpermanganateasethylenescavengersanoptimizationstudy |
_version_ |
1718416042596761600 |