A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.

Oligoasthenozoospermia is a complex disease caused by a variety of factors, and its incidence is increasing yearly worldwide. Yishen Tongluo formula (YSTLF), created by Professor Sun Zixue, has been used to treat oligoasthenozoospermia in clinical practice for several decades with a good therapeutic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yangdi Chen, Fanggang Bi, Zixue Sun
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7933526b74284ef0a18f0f51f9c23316
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7933526b74284ef0a18f0f51f9c23316
record_format dspace
spelling oai:doaj.org-article:7933526b74284ef0a18f0f51f9c233162021-12-02T20:10:19ZA network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.1932-620310.1371/journal.pone.0252906https://doaj.org/article/7933526b74284ef0a18f0f51f9c233162021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252906https://doaj.org/toc/1932-6203Oligoasthenozoospermia is a complex disease caused by a variety of factors, and its incidence is increasing yearly worldwide. Yishen Tongluo formula (YSTLF), created by Professor Sun Zixue, has been used to treat oligoasthenozoospermia in clinical practice for several decades with a good therapeutic effect. However, the chemical and pharmacological profiles of YSTLF remain unclear and need to be elucidated. In this study, a network pharmacology approach was applied to explore the potential mechanisms of YSTLF in oligoasthenozoospermia treatment. All of the compounds in YSTLF were retrieved from the corresponding databases, and the bioactive ingredients were screened according to their oral bioavailability (OB) and drug-likeness (DL). The potential proteins of YSTLF were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, while the potential genes of oligoasthenozoospermia were obtained from the GeneCards database and the DisGeNET database. The STRING database was used to construct an interaction network according to the common targets identified by the online tool Venny for YSTLF and oligoasthenozoospermia. The topological characteristics of nodes were visualized and analyzed through Cytoscape. Biological functions and significant pathways were determined and analyzed using the Gene Ontology (GO) knowledgebase, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Metascape. Finally, the disease-formula-compound-target-pathway network was constructed by Cytoscape. A total of 106 bioactive ingredients and 134 potential targets from YSTLF were associated with oligoasthenozoospermia or considered to be therapeutically relevant. Pathway analysis indicated that the PI3K/Akt, MAPK and apoptosis signaling pathways were significant pathways involved in oligoasthenozoospermia. In conclusion, the current study expounded the pharmacological actions and molecular mechanisms of YSTLF in treating oligoasthenozoospermia from a holistic viewpoint. The potential molecular mechanisms were closely related to antioxidative stress, antiapoptosis and anti-inflammation, with TNF, CCND1, ESR1, NFKBIA, NR3C1, MAPK8, and IL6 being possible targets. This network pharmacology prediction may offer a helpful tool to illustrate the molecular mechanisms of the Chinese herbal compound YSTLF in oligoasthenozoospermia treatment.Yangdi ChenFanggang BiZixue SunPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252906 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yangdi Chen
Fanggang Bi
Zixue Sun
A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.
description Oligoasthenozoospermia is a complex disease caused by a variety of factors, and its incidence is increasing yearly worldwide. Yishen Tongluo formula (YSTLF), created by Professor Sun Zixue, has been used to treat oligoasthenozoospermia in clinical practice for several decades with a good therapeutic effect. However, the chemical and pharmacological profiles of YSTLF remain unclear and need to be elucidated. In this study, a network pharmacology approach was applied to explore the potential mechanisms of YSTLF in oligoasthenozoospermia treatment. All of the compounds in YSTLF were retrieved from the corresponding databases, and the bioactive ingredients were screened according to their oral bioavailability (OB) and drug-likeness (DL). The potential proteins of YSTLF were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, while the potential genes of oligoasthenozoospermia were obtained from the GeneCards database and the DisGeNET database. The STRING database was used to construct an interaction network according to the common targets identified by the online tool Venny for YSTLF and oligoasthenozoospermia. The topological characteristics of nodes were visualized and analyzed through Cytoscape. Biological functions and significant pathways were determined and analyzed using the Gene Ontology (GO) knowledgebase, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Metascape. Finally, the disease-formula-compound-target-pathway network was constructed by Cytoscape. A total of 106 bioactive ingredients and 134 potential targets from YSTLF were associated with oligoasthenozoospermia or considered to be therapeutically relevant. Pathway analysis indicated that the PI3K/Akt, MAPK and apoptosis signaling pathways were significant pathways involved in oligoasthenozoospermia. In conclusion, the current study expounded the pharmacological actions and molecular mechanisms of YSTLF in treating oligoasthenozoospermia from a holistic viewpoint. The potential molecular mechanisms were closely related to antioxidative stress, antiapoptosis and anti-inflammation, with TNF, CCND1, ESR1, NFKBIA, NR3C1, MAPK8, and IL6 being possible targets. This network pharmacology prediction may offer a helpful tool to illustrate the molecular mechanisms of the Chinese herbal compound YSTLF in oligoasthenozoospermia treatment.
format article
author Yangdi Chen
Fanggang Bi
Zixue Sun
author_facet Yangdi Chen
Fanggang Bi
Zixue Sun
author_sort Yangdi Chen
title A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.
title_short A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.
title_full A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.
title_fullStr A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.
title_full_unstemmed A network pharmacology approach to determine the underlying mechanisms of action of Yishen Tongluo formula for the treatment of oligoasthenozoospermia.
title_sort network pharmacology approach to determine the underlying mechanisms of action of yishen tongluo formula for the treatment of oligoasthenozoospermia.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/7933526b74284ef0a18f0f51f9c23316
work_keys_str_mv AT yangdichen anetworkpharmacologyapproachtodeterminetheunderlyingmechanismsofactionofyishentongluoformulaforthetreatmentofoligoasthenozoospermia
AT fanggangbi anetworkpharmacologyapproachtodeterminetheunderlyingmechanismsofactionofyishentongluoformulaforthetreatmentofoligoasthenozoospermia
AT zixuesun anetworkpharmacologyapproachtodeterminetheunderlyingmechanismsofactionofyishentongluoformulaforthetreatmentofoligoasthenozoospermia
AT yangdichen networkpharmacologyapproachtodeterminetheunderlyingmechanismsofactionofyishentongluoformulaforthetreatmentofoligoasthenozoospermia
AT fanggangbi networkpharmacologyapproachtodeterminetheunderlyingmechanismsofactionofyishentongluoformulaforthetreatmentofoligoasthenozoospermia
AT zixuesun networkpharmacologyapproachtodeterminetheunderlyingmechanismsofactionofyishentongluoformulaforthetreatmentofoligoasthenozoospermia
_version_ 1718375007681249280