Enhanced differential expression statistics for data-independent acquisition proteomics
Abstract We describe a new reproducibility-optimization method ROPECA for statistical analysis of proteomics data with a specific focus on the emerging data-independent acquisition (DIA) mass spectrometry technology. ROPECA optimizes the reproducibility of statistical testing on peptide-level and ag...
Guardado en:
Autores principales: | Tomi Suomi, Laura L. Elo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7935f0467ab84c5385fae58ec6731df8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
por: Yi Yang, et al.
Publicado: (2020) -
Dynamic Urinary Proteome Changes in Ovalbumin-Induced Asthma Mouse Model Using Data-Independent Acquisition Proteomics
por: Qin W, et al.
Publicado: (2021) -
In-depth method assessments of differentially expressed protein detection for shotgun proteomics data with missing values
por: Jinxia Wang, et al.
Publicado: (2017) -
Extending the Proteomic Characterization of Candida albicans Exposed to Stress and Apoptotic Inducers through Data-Independent Acquisition Mass Spectrometry
por: Ahinara Amador-García, et al.
Publicado: (2021) -
Survival analysis in breast cancer using proteomic data from four independent datasets
por: Ágnes Ősz, et al.
Publicado: (2021)