Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other v...
Guardado en:
Autores principales: | Bernhard Nessler, Michael Pfeiffer, Lars Buesing, Wolfgang Maass |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/79431ec7b4384b8db8731574949f8579 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
por: Lars Buesing, et al.
Publicado: (2011) -
Inhibitory microcircuits for top-down plasticity of sensory representations
por: Katharina Anna Wilmes, et al.
Publicado: (2019) -
Progress and challenges for understanding the function of cortical microcircuits in auditory processing
por: Jennifer M. Blackwell, et al.
Publicado: (2017) -
Inferring and validating mechanistic models of neural microcircuits based on spike-train data
por: Josef Ladenbauer, et al.
Publicado: (2019) -
Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism
por: Bo-yong Park, et al.
Publicado: (2021)