Efficient, high-performance semantic segmentation using multi-scale feature extraction.
The success of deep learning in recent years has arguably been driven by the availability of large datasets for training powerful predictive algorithms. In medical applications however, the sensitive nature of the data limits the collection and exchange of large-scale datasets. Privacy-preserving an...
Guardado en:
Autores principales: | Moritz Knolle, Georgios Kaissis, Friederike Jungmann, Sebastian Ziegelmayer, Daniel Sasse, Marcus Makowski, Daniel Rueckert, Rickmer Braren |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/795046935447453c9293c2f093d03ef3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Medical imaging deep learning with differential privacy
por: Alexander Ziller, et al.
Publicado: (2021) -
Semantic Segmentation Network for Surface Defect Detection of Automobile Wheel Hub Fusing High-Resolution Feature and Multi-Scale Feature
por: Chaowei Tang, et al.
Publicado: (2021) -
Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study
por: Qi Dou, et al.
Publicado: (2021) -
Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning
por: Usynin Dmitrii, et al.
Publicado: (2022) -
Fault Diagnosis of Permanent Magnet DC Motors Based on Multi-Segment Feature Extraction
por: Lixin Lu, et al.
Publicado: (2021)