Controlling nonlinear dynamical systems into arbitrary states using machine learning
Abstract Controlling nonlinear dynamical systems is a central task in many different areas of science and engineering. Chaotic systems can be stabilized (or chaotified) with small perturbations, yet existing approaches either require knowledge about the underlying system equations or large data sets...
Enregistré dans:
Auteurs principaux: | Alexander Haluszczynski, Christoph Räth |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/79566013c83c4808a31f467f4f6ba7ab |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Entanglement concentration for arbitrary four-particle linear cluster states
par: Ting-Ting Song, et autres
Publié: (2017) -
Arbitrary shaped beam scattering from a chiral-coated conducting object with arbitrary monochromatic illumination
par: Mingjun Wang, et autres
Publié: (2018) -
Pair-correlation ansatz for the ground state of interacting bosons in an arbitrary one-dimensional potential
par: Przemysław Kościk, et autres
Publié: (2021) -
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
par: Anna Kutschireiter, et autres
Publié: (2017) -
Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED
par: Tong Liu, et autres
Publié: (2017)