Controlling nonlinear dynamical systems into arbitrary states using machine learning
Abstract Controlling nonlinear dynamical systems is a central task in many different areas of science and engineering. Chaotic systems can be stabilized (or chaotified) with small perturbations, yet existing approaches either require knowledge about the underlying system equations or large data sets...
Guardado en:
Autores principales: | Alexander Haluszczynski, Christoph Räth |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/79566013c83c4808a31f467f4f6ba7ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Entanglement concentration for arbitrary four-particle linear cluster states
por: Ting-Ting Song, et al.
Publicado: (2017) -
Arbitrary shaped beam scattering from a chiral-coated conducting object with arbitrary monochromatic illumination
por: Mingjun Wang, et al.
Publicado: (2018) -
Pair-correlation ansatz for the ground state of interacting bosons in an arbitrary one-dimensional potential
por: Przemysław Kościk, et al.
Publicado: (2021) -
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception
por: Anna Kutschireiter, et al.
Publicado: (2017) -
Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED
por: Tong Liu, et al.
Publicado: (2017)