An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation
Abstract For the LCL‐type grid‐connected inverter, when the capacitor voltage feedforward is applied, the delay in the digital control system could change the phase characteristics of capacitor voltage feedback and affect the stability of the system. To solve the problem, a delay compensation method...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/795acafc33534e19b1d0de65a6f3a1e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:795acafc33534e19b1d0de65a6f3a1e4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:795acafc33534e19b1d0de65a6f3a1e42021-11-08T12:55:44ZAn improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation1755-45431755-453510.1049/pel2.12193https://doaj.org/article/795acafc33534e19b1d0de65a6f3a1e42021-11-01T00:00:00Zhttps://doi.org/10.1049/pel2.12193https://doaj.org/toc/1755-4535https://doaj.org/toc/1755-4543Abstract For the LCL‐type grid‐connected inverter, when the capacitor voltage feedforward is applied, the delay in the digital control system could change the phase characteristics of capacitor voltage feedback and affect the stability of the system. To solve the problem, a delay compensation method based on lead compensator is proposed in this paper, which can reduce the impacts of control delay on the capacitor voltage full feedforward control system. In this study, a lead compensator is introduced into the feedforward channel to compensate the phase lag, and the compensation function is designed to compensate for the phase margin but not change the system amplitude gain. The proposed strategy can keep the phase margin of the system above 25° when the grid impedance changes from 0 to 2.6 mH (0.1 p.u.), which enhances the robustness of the grid‐connected inverter under weak condition. The grid current distortion caused by grid background harmonics is greatly reduced and is kept within 4%. Moreover, the proposed strategy has fast dynamics while ensuring the system stability. Finally, the simulation and experimental results are presented to verify the effectiveness and robustness of the proposed control strategy.Xingwu YangGuokuai WuZhicheng MengYani WangLiang JiHua XueXiaoyan BianWileyarticleElectronicsTK7800-8360ENIET Power Electronics, Vol 14, Iss 15, Pp 2466-2477 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Electronics TK7800-8360 |
spellingShingle |
Electronics TK7800-8360 Xingwu Yang Guokuai Wu Zhicheng Meng Yani Wang Liang Ji Hua Xue Xiaoyan Bian An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation |
description |
Abstract For the LCL‐type grid‐connected inverter, when the capacitor voltage feedforward is applied, the delay in the digital control system could change the phase characteristics of capacitor voltage feedback and affect the stability of the system. To solve the problem, a delay compensation method based on lead compensator is proposed in this paper, which can reduce the impacts of control delay on the capacitor voltage full feedforward control system. In this study, a lead compensator is introduced into the feedforward channel to compensate the phase lag, and the compensation function is designed to compensate for the phase margin but not change the system amplitude gain. The proposed strategy can keep the phase margin of the system above 25° when the grid impedance changes from 0 to 2.6 mH (0.1 p.u.), which enhances the robustness of the grid‐connected inverter under weak condition. The grid current distortion caused by grid background harmonics is greatly reduced and is kept within 4%. Moreover, the proposed strategy has fast dynamics while ensuring the system stability. Finally, the simulation and experimental results are presented to verify the effectiveness and robustness of the proposed control strategy. |
format |
article |
author |
Xingwu Yang Guokuai Wu Zhicheng Meng Yani Wang Liang Ji Hua Xue Xiaoyan Bian |
author_facet |
Xingwu Yang Guokuai Wu Zhicheng Meng Yani Wang Liang Ji Hua Xue Xiaoyan Bian |
author_sort |
Xingwu Yang |
title |
An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation |
title_short |
An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation |
title_full |
An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation |
title_fullStr |
An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation |
title_full_unstemmed |
An improved capacitor voltage full feedforward control strategy for LCL‐type grid‐connected inverter based on control delay compensation |
title_sort |
improved capacitor voltage full feedforward control strategy for lcl‐type grid‐connected inverter based on control delay compensation |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/795acafc33534e19b1d0de65a6f3a1e4 |
work_keys_str_mv |
AT xingwuyang animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT guokuaiwu animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT zhichengmeng animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT yaniwang animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT liangji animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT huaxue animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT xiaoyanbian animprovedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT xingwuyang improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT guokuaiwu improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT zhichengmeng improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT yaniwang improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT liangji improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT huaxue improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation AT xiaoyanbian improvedcapacitorvoltagefullfeedforwardcontrolstrategyforlcltypegridconnectedinverterbasedoncontroldelaycompensation |
_version_ |
1718442250734665728 |