2-step deep learning model for landmarks localization in spine radiographs
Abstract In this work we propose to use Deep Learning to automatically calculate the coordinates of the vertebral corners in sagittal x-rays images of the thoracolumbar spine and, from those landmarks, to calculate relevant radiological parameters such as L1–L5 and L1–S1 lordosis and sacral slope. F...
Guardado en:
Autores principales: | Andrea Cina, Tito Bassani, Matteo Panico, Andrea Luca, Youssef Masharawi, Marco Brayda-Bruno, Fabio Galbusera |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/797643136c8f4695bab1a7e61c6b3066 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The importance of curve severity, type and instrumentation strategy in the surgical correction of adolescent idiopathic scoliosis: an in silico clinical trial on 64 cases
por: Fabio Galbusera, et al.
Publicado: (2021) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
por: Yu-Cheng Yeh, et al.
Publicado: (2021) -
The Simulation of Muscles Forces Increases the Stresses in Lumbar Fixation Implants with Respect to Pure Moment Loading
por: Matteo Panico, et al.
Publicado: (2021) -
A comparative shape analysis of the cervical spine between individuals with cervicogenic headaches and asymptomatic controls
por: Youssef Masharawi, et al.
Publicado: (2021) -
Modeling of Structure Landmark for Indoor Pedestrian Localization
por: Tao Liu, et al.
Publicado: (2019)