A deep-learned skin sensor decoding the epicentral human motions
Real-time monitoring human motions normally demands connecting a large number of sensors in a complicated network. To make it simpler, Kim et al. decode the motion of fingers using a flexible sensor attached on wrist that measures skin deformation with the help of a deep-learning architecture.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/797f526273074c249f4dc388256638d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Real-time monitoring human motions normally demands connecting a large number of sensors in a complicated network. To make it simpler, Kim et al. decode the motion of fingers using a flexible sensor attached on wrist that measures skin deformation with the help of a deep-learning architecture. |
---|