A deep-learned skin sensor decoding the epicentral human motions

Real-time monitoring human motions normally demands connecting a large number of sensors in a complicated network. To make it simpler, Kim et al. decode the motion of fingers using a flexible sensor attached on wrist that measures skin deformation with the help of a deep-learning architecture.

Guardado en:
Detalles Bibliográficos
Autores principales: Kyun Kyu Kim, InHo Ha, Min Kim, Joonhwa Choi, Phillip Won, Sungho Jo, Seung Hwan Ko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/797f526273074c249f4dc388256638d3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Real-time monitoring human motions normally demands connecting a large number of sensors in a complicated network. To make it simpler, Kim et al. decode the motion of fingers using a flexible sensor attached on wrist that measures skin deformation with the help of a deep-learning architecture.