Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity

Cell surface proteins contribute to neuronal development and activity-dependent synaptic plasticity. Here, the authors perform a time-resolved surfaceome analysis of developing primary neurons and in response to homeostatic synaptic scaling and chemical long-term potentiation (cLTP), revealing surfa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marc van Oostrum, Benjamin Campbell, Charlotte Seng, Maik Müller, Susanne tom Dieck, Jacqueline Hammer, Patrick G. A. Pedrioli, Csaba Földy, Shiva K. Tyagarajan, Bernd Wollscheid
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/798a0222f1cc45678a4c20efbeb73d27
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:798a0222f1cc45678a4c20efbeb73d27
record_format dspace
spelling oai:doaj.org-article:798a0222f1cc45678a4c20efbeb73d272021-12-02T18:37:17ZSurfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity10.1038/s41467-020-18494-62041-1723https://doaj.org/article/798a0222f1cc45678a4c20efbeb73d272020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18494-6https://doaj.org/toc/2041-1723Cell surface proteins contribute to neuronal development and activity-dependent synaptic plasticity. Here, the authors perform a time-resolved surfaceome analysis of developing primary neurons and in response to homeostatic synaptic scaling and chemical long-term potentiation (cLTP), revealing surface proteome remodeling largely independent of global proteostasis.Marc van OostrumBenjamin CampbellCharlotte SengMaik MüllerSusanne tom DieckJacqueline HammerPatrick G. A. PedrioliCsaba FöldyShiva K. TyagarajanBernd WollscheidNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-16 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Marc van Oostrum
Benjamin Campbell
Charlotte Seng
Maik Müller
Susanne tom Dieck
Jacqueline Hammer
Patrick G. A. Pedrioli
Csaba Földy
Shiva K. Tyagarajan
Bernd Wollscheid
Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
description Cell surface proteins contribute to neuronal development and activity-dependent synaptic plasticity. Here, the authors perform a time-resolved surfaceome analysis of developing primary neurons and in response to homeostatic synaptic scaling and chemical long-term potentiation (cLTP), revealing surface proteome remodeling largely independent of global proteostasis.
format article
author Marc van Oostrum
Benjamin Campbell
Charlotte Seng
Maik Müller
Susanne tom Dieck
Jacqueline Hammer
Patrick G. A. Pedrioli
Csaba Földy
Shiva K. Tyagarajan
Bernd Wollscheid
author_facet Marc van Oostrum
Benjamin Campbell
Charlotte Seng
Maik Müller
Susanne tom Dieck
Jacqueline Hammer
Patrick G. A. Pedrioli
Csaba Földy
Shiva K. Tyagarajan
Bernd Wollscheid
author_sort Marc van Oostrum
title Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
title_short Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
title_full Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
title_fullStr Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
title_full_unstemmed Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
title_sort surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/798a0222f1cc45678a4c20efbeb73d27
work_keys_str_mv AT marcvanoostrum surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT benjamincampbell surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT charlotteseng surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT maikmuller surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT susannetomdieck surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT jacquelinehammer surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT patrickgapedrioli surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT csabafoldy surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT shivaktyagarajan surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
AT berndwollscheid surfaceomedynamicsrevealproteostasisindependentreorganizationofneuronalsurfaceproteinsduringdevelopmentandsynapticplasticity
_version_ 1718377805922697216