Graphene microfiber as a scaffold for regulation of neural stem cells differentiation
Abstract We report the cytocompatibility and regulating effects of the nanostructured reduced graphene oxide (rGO) microfibers, which are synthesized through a capillary hydrothermal method, on neural differentiation of neural stem cells (NSCs). Our findings indicate that the flexible, mechanically...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/79a2698081fe434baef6ba6b647f3bcb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We report the cytocompatibility and regulating effects of the nanostructured reduced graphene oxide (rGO) microfibers, which are synthesized through a capillary hydrothermal method, on neural differentiation of neural stem cells (NSCs). Our findings indicate that the flexible, mechanically strong, surface nanoporous, biodegradable, and cytocompatible nanostructured rGO microfibers not only offer a more powerful substrate for NSCs adhesion and proliferation compared with 2D graphene film and tissue cluture plate but also regulate the NSCs differentiation into neurons and form a dense neural network surrounding the microfiber. These results illustrate the great potential of nanostructured rGO microfibers as an artificial neural tissue engineering (NTE) scaffold for nerve regeneration. |
---|