Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface

Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: John M. Herbert, Suranjan K. Paul
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/79a8b1047bb74dfeb300a3199a423643
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:79a8b1047bb74dfeb300a3199a423643
record_format dspace
spelling oai:doaj.org-article:79a8b1047bb74dfeb300a3199a4236432021-11-11T18:39:49ZInteraction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface10.3390/molecules262167191420-3049https://doaj.org/article/79a8b1047bb74dfeb300a3199a4236432021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/21/6719https://doaj.org/toc/1420-3049Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl<sup>−</sup>, Br<sup>−</sup>, I<sup>−</sup>, CN<sup>−</sup>, OCN<sup>−</sup>, SCN<sup>−</sup>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>NO</mi><mn>2</mn><mo>−</mo></msubsup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>NO</mi><mn>3</mn><mo>−</mo></msubsup></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>ClO</mi><mi>n</mi><mo>−</mo></msubsup></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></mrow></semantics></math></inline-formula>), several of which are archetypal examples of surface-active species. In all cases, we find that average anion–water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br<sup>−</sup>(aq), I<sup>−</sup>(aq), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>ClO</mi><mn>4</mn><mo>−</mo></msubsup></semantics></math></inline-formula>(aq), and SCN<sup>−</sup>(aq), and also for ClO<sup>−</sup>(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl<sup>−</sup>(aq) ion has a slightly larger CT energy at the interface, but <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>NO</mi><mn>3</mn><mo>−</mo></msubsup></semantics></math></inline-formula>(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.John M. HerbertSuranjan K. PaulMDPI AGarticleair–water interfaceHofmeister serieshydrogen bondingcharge transfersymmetry-adapted perturbation theorynoncovalent interactionsOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 6719, p 6719 (2021)
institution DOAJ
collection DOAJ
language EN
topic air–water interface
Hofmeister series
hydrogen bonding
charge transfer
symmetry-adapted perturbation theory
noncovalent interactions
Organic chemistry
QD241-441
spellingShingle air–water interface
Hofmeister series
hydrogen bonding
charge transfer
symmetry-adapted perturbation theory
noncovalent interactions
Organic chemistry
QD241-441
John M. Herbert
Suranjan K. Paul
Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface
description Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl<sup>−</sup>, Br<sup>−</sup>, I<sup>−</sup>, CN<sup>−</sup>, OCN<sup>−</sup>, SCN<sup>−</sup>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>NO</mi><mn>2</mn><mo>−</mo></msubsup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>NO</mi><mn>3</mn><mo>−</mo></msubsup></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>ClO</mi><mi>n</mi><mo>−</mo></msubsup></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></mrow></semantics></math></inline-formula>), several of which are archetypal examples of surface-active species. In all cases, we find that average anion–water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br<sup>−</sup>(aq), I<sup>−</sup>(aq), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>ClO</mi><mn>4</mn><mo>−</mo></msubsup></semantics></math></inline-formula>(aq), and SCN<sup>−</sup>(aq), and also for ClO<sup>−</sup>(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl<sup>−</sup>(aq) ion has a slightly larger CT energy at the interface, but <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>NO</mi><mn>3</mn><mo>−</mo></msubsup></semantics></math></inline-formula>(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.
format article
author John M. Herbert
Suranjan K. Paul
author_facet John M. Herbert
Suranjan K. Paul
author_sort John M. Herbert
title Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface
title_short Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface
title_full Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface
title_fullStr Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface
title_full_unstemmed Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface
title_sort interaction energy analysis of monovalent inorganic anions in bulk water versus air/water interface
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/79a8b1047bb74dfeb300a3199a423643
work_keys_str_mv AT johnmherbert interactionenergyanalysisofmonovalentinorganicanionsinbulkwaterversusairwaterinterface
AT suranjankpaul interactionenergyanalysisofmonovalentinorganicanionsinbulkwaterversusairwaterinterface
_version_ 1718431770876051456