Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel
Abstract The effect of low oxygen-partial pressured carburizing on relaxation process for 316L stainless steel is reported. Phase, morphology, and amount of compound formation during initial stage of carburizing are investigated using X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/79cd5133f55e4eb7b314945c03953c99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:79cd5133f55e4eb7b314945c03953c99 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:79cd5133f55e4eb7b314945c03953c992021-12-02T17:24:22ZEffect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel10.1038/s41598-021-91958-x2045-2322https://doaj.org/article/79cd5133f55e4eb7b314945c03953c992021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91958-xhttps://doaj.org/toc/2045-2322Abstract The effect of low oxygen-partial pressured carburizing on relaxation process for 316L stainless steel is reported. Phase, morphology, and amount of compound formation during initial stage of carburizing are investigated using X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show formation and development of surface multilayer with nano-grain-carbide (Cr7C3, Fe7C3, and/or Cr3C2) generation in the layer located below outermost protective layer. The relaxation process has been investigated using electrochemical impedance spectroscopy (EIS). Formation of nano-grain carbide(s) during carburizing causes deterioration effect on the electrochemical behavior of steel. However, the steel with large amount of carbide generation (carburized for 30 min) tends to have higher corrosion resistance (indicated by higher values of R cl and R ct ) than the smaller ones (10 and 20 min) due to the effect of phase, grain size, morphology, and amount of compound formation.Chatdanai BoonruangWutipong SanumangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Chatdanai Boonruang Wutipong Sanumang Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel |
description |
Abstract The effect of low oxygen-partial pressured carburizing on relaxation process for 316L stainless steel is reported. Phase, morphology, and amount of compound formation during initial stage of carburizing are investigated using X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show formation and development of surface multilayer with nano-grain-carbide (Cr7C3, Fe7C3, and/or Cr3C2) generation in the layer located below outermost protective layer. The relaxation process has been investigated using electrochemical impedance spectroscopy (EIS). Formation of nano-grain carbide(s) during carburizing causes deterioration effect on the electrochemical behavior of steel. However, the steel with large amount of carbide generation (carburized for 30 min) tends to have higher corrosion resistance (indicated by higher values of R cl and R ct ) than the smaller ones (10 and 20 min) due to the effect of phase, grain size, morphology, and amount of compound formation. |
format |
article |
author |
Chatdanai Boonruang Wutipong Sanumang |
author_facet |
Chatdanai Boonruang Wutipong Sanumang |
author_sort |
Chatdanai Boonruang |
title |
Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel |
title_short |
Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel |
title_full |
Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel |
title_fullStr |
Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel |
title_full_unstemmed |
Effect of nano-grain carbide formation on electrochemical behavior of 316L stainless steel |
title_sort |
effect of nano-grain carbide formation on electrochemical behavior of 316l stainless steel |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/79cd5133f55e4eb7b314945c03953c99 |
work_keys_str_mv |
AT chatdanaiboonruang effectofnanograincarbideformationonelectrochemicalbehaviorof316lstainlesssteel AT wutipongsanumang effectofnanograincarbideformationonelectrochemicalbehaviorof316lstainlesssteel |
_version_ |
1718380919457316864 |