Research on LSTM+Attention Model of Infant Cry Classification
According to the different emotional needs of infants, the effective acquisition of frame-level speech features is realized, and the infant speech emotion recognition model based on the improved Long- and Short-Term Memory (LSTM) network is established. The frame-level speech features are used inste...
Enregistré dans:
Auteurs principaux: | Tianye Jian, Yizhun Peng, Wanlong Peng, Zhou Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Atlantis Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/79d57d420c7e4b93b6fe9f3e3217f915 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
BiLSTM-Attention: An Air Target Tactical Intention Recognition Model
par: Teng Fei, Liu Shu, Song Yafei
Publié: (2021) -
The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
par: Grzegorz Kłosowski, et autres
Publié: (2021) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
par: Grzegorz Kłosowski, et autres
Publié: (2021) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
par: Diogo F. Costa Silva, et autres
Publié: (2021) -
A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning
par: Xiaoming Xie, et autres
Publié: (2021)