The wetting properties of frosted glass

Frosted glass is a common, low cost material. Its roughness can be used to control how it is wet by water. In this paper, the wetting properties of silicone oil and water are investigated. For the oil, wetting is total since the oleophilic character of the glass is enhanced by its roughness. Due to...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Stéphane Dorbolo
Format: article
Langue:EN
Publié: Papers in Physics 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/79d9ed4c3e6d4183accdb726f5d628f4
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Frosted glass is a common, low cost material. Its roughness can be used to control how it is wet by water. In this paper, the wetting properties of silicone oil and water are investigated. For the oil, wetting is total since the oleophilic character of the glass is enhanced by its roughness. Due to the remarkable optical properties of frosted glass, the spreading of oil droplets on its surface was recorded over three months. Frosted glass is a parahydrophilic surface because of its large contact angle hysteresis (up to 80° ). The behaviour of oil and water droplets was compared on a long piece of inclined frosted glass. The trajectories (and the spreading) of the droplets were studied and phenomenological laws were deduced to describe the dependence of the droplet speed on the initial volume of the droplet and the angle of inclination. Such dependences of speed at long travel distances (100 times the capillary length) were deduced and rationalised with a simple model that takes into account the thickness of the wake. Moreover, we analysed the flow inside the wake of water droplets sliding on inclined frosted glass. Suggestions are given on how to exploit drainage of the water droplet wake and the high hysteresis of water within the framework of open microfluidics.