Flutter speed prediction by using deep learning
Deep learning technology has been widely used in various field in recent years. This study intends to use deep learning algorithms to analyze the aeroelastic phenomenon and compare the differences between Deep Neural Network (DNN) and Long Short-term Memory (LSTM) applied on the flutter speed predic...
Guardado en:
Autores principales: | Yi-Ren Wang, Yi-Jyun Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a2587ef3bc34340833c3f799ba55d26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Induction motor condition monitoring using infrared thermography imaging and ensemble learning techniques
por: Amine Mahami, et al.
Publicado: (2021) -
Aeroelastic Simulation of Stall Flutter Undergoing High and Low Amplitude Limit Cycle Oscillations
por: M. K. H. M. Zorkipli, et al.
Publicado: (2021) -
Displacement prediction and optimization of a non-circular planetary gear hydraulic motor
por: Biao Zhang, et al.
Publicado: (2021) -
Study of geometrical defects of free-form surface machined using neural network
por: Benattia Bloul, et al.
Publicado: (2021) -
Using finite element analysis to discuss the study of drawing of servo stamping curve
por: Dyi-Cheng Chen, et al.
Publicado: (2021)