An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box
Abstract Falls are a leading cause of unintentional injuries and can result in devastating disabilities and fatalities when left undetected and not treated in time. Current detection methods have one or more of the following problems: frequent battery replacements, wearer discomfort, high costs, com...
Guardado en:
Autores principales: | Francy Shu, Jeff Shu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a25bc620b38442688d87bded839c2eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of accelerometer-based fall detection algorithms on real-world falls.
por: Fabio Bagalà, et al.
Publicado: (2012) -
Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique.
por: Nataliya Shishov, et al.
Publicado: (2021) -
Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
por: Nataliya Shishov, et al.
Publicado: (2021) -
Human Falling Recognition Based on Movement Energy Expenditure Feature
por: Daohua Pan, et al.
Publicado: (2021) -
Report on In-Class Variables: Fall 1987 & Fall 1992
Publicado: (2000)