Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles. |
---|