Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game

Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.

Guardado en:
Detalles Bibliográficos
Autores principales: Kelsey R. McDonald, William F. Broderick, Scott A. Huettel, John M. Pearson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7a267ee763994fdba6cd11b8b5c6012e
record_format dspace
spelling oai:doaj.org-article:7a267ee763994fdba6cd11b8b5c6012e2021-12-02T14:38:44ZBayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game10.1038/s41467-019-09789-42041-1723https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e2019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09789-4https://doaj.org/toc/2041-1723Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.Kelsey R. McDonaldWilliam F. BroderickScott A. HuettelJohn M. PearsonNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-12 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kelsey R. McDonald
William F. Broderick
Scott A. Huettel
John M. Pearson
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
description Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.
format article
author Kelsey R. McDonald
William F. Broderick
Scott A. Huettel
John M. Pearson
author_facet Kelsey R. McDonald
William F. Broderick
Scott A. Huettel
John M. Pearson
author_sort Kelsey R. McDonald
title Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
title_short Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
title_full Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
title_fullStr Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
title_full_unstemmed Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
title_sort bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e
work_keys_str_mv AT kelseyrmcdonald bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame
AT williamfbroderick bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame
AT scottahuettel bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame
AT johnmpearson bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame
_version_ 1718390903027007488