Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7a267ee763994fdba6cd11b8b5c6012e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7a267ee763994fdba6cd11b8b5c6012e2021-12-02T14:38:44ZBayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game10.1038/s41467-019-09789-42041-1723https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e2019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09789-4https://doaj.org/toc/2041-1723Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.Kelsey R. McDonaldWilliam F. BroderickScott A. HuettelJohn M. PearsonNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-12 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Kelsey R. McDonald William F. Broderick Scott A. Huettel John M. Pearson Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
description |
Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles. |
format |
article |
author |
Kelsey R. McDonald William F. Broderick Scott A. Huettel John M. Pearson |
author_facet |
Kelsey R. McDonald William F. Broderick Scott A. Huettel John M. Pearson |
author_sort |
Kelsey R. McDonald |
title |
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
title_short |
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
title_full |
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
title_fullStr |
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
title_full_unstemmed |
Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
title_sort |
bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e |
work_keys_str_mv |
AT kelseyrmcdonald bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame AT williamfbroderick bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame AT scottahuettel bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame AT johnmpearson bayesiannonparametricmodelscharacterizeinstantaneousstrategiesinacompetitivedynamicgame |
_version_ |
1718390903027007488 |