Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.
Guardado en:
Autores principales: | Kelsey R. McDonald, William F. Broderick, Scott A. Huettel, John M. Pearson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian nonparametric discovery of isoforms and individual specific quantification
por: Derek Aguiar, et al.
Publicado: (2018) -
A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics.
por: Geyu Zhou, et al.
Publicado: (2021) -
Journal of nonparametric statistics
Publicado: (1991) -
Nonparametric sparsification of complex multiscale networks.
por: Nicholas J Foti, et al.
Publicado: (2011) -
TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8
por: Randy L. Parrish, et al.
Publicado: (2022)