Bayesian nonparametric models characterize instantaneous strategies in a competitive dynamic game
Game theory typically models strategic human behavior using scenarios with decision constraints that poorly represent real-world social interactions. Here, the authors show it is possible to model dynamic, real-world strategic interactions using Bayesian and reinforcement learning principles.
Enregistré dans:
Auteurs principaux: | Kelsey R. McDonald, William F. Broderick, Scott A. Huettel, John M. Pearson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7a267ee763994fdba6cd11b8b5c6012e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bayesian nonparametric discovery of isoforms and individual specific quantification
par: Derek Aguiar, et autres
Publié: (2018) -
A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics.
par: Geyu Zhou, et autres
Publié: (2021) -
Journal of nonparametric statistics
Publié: (1991) -
Nonparametric sparsification of complex multiscale networks.
par: Nicholas J Foti, et autres
Publié: (2011) -
TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8
par: Randy L. Parrish, et autres
Publié: (2022)