Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence
Abstract Generalized anxiety disorder (GAD) and major depressive disorder (MDD) are highly prevalent and impairing problems, but frequently go undetected, leading to substantial treatment delays. Electronic health records (EHRs) collect a great deal of biometric markers and patient characteristics t...
Guardado en:
Autores principales: | Matthew D. Nemesure, Michael V. Heinz, Raphael Huang, Nicholas C. Jacobson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a3200ae1e9343eba56d585102237a2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainable artificial intelligence model to predict acute critical illness from electronic health records
por: Simon Meyer Lauritsen, et al.
Publicado: (2020) -
An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain
por: Anette Paulina Vistoso Monreal, et al.
Publicado: (2021) -
Prediction of Shield Machine Attitude Based on Various Artificial Intelligence Technologies
por: Haohan Xiao, et al.
Publicado: (2021) -
Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach
por: Silvan Hornstein, et al.
Publicado: (2021) -
Artificial Intelligence Machine Translation Based on Fuzzy Algorithm
por: Zhimin Li
Publicado: (2021)