Identification of Streptococcus cristatus peptides that repress expression of virulence genes in Porphyromonas gingivalis

Abstract Dental plaque is a complex multispecies biofilm, and is a direct precursor of periodontal disease. The virulence of periodontal pathogens, such as Porphyromonas gingivalis, is expressed in the context of this polymicrobial community. Previously, we reported an antagonistic relationship betw...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Meng-Hsuan Ho, Richard J. Lamont, Hua Xie
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7a32f6d7689d46e7918bbd68124a4f51
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Dental plaque is a complex multispecies biofilm, and is a direct precursor of periodontal disease. The virulence of periodontal pathogens, such as Porphyromonas gingivalis, is expressed in the context of this polymicrobial community. Previously, we reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis, and identified arginine deiminase (ArcA) of S. cristatus as the signaling molecule to which P. gingivalis responds by repressing the expression and production of FimA protein. Here we demonstrate that direct interaction between P. gingivalis and S. cristatus is necessary for the cell-cell communication. Two surface proteins of P. gingivalis, PGN_0294 and PGN_0806, were found to interact with S. cristatus ArcA. Using a peptide array analysis, we identified several P. gingivalis-binding sites of ArcA, which led to the discovery of an 11-mer peptide with the native sequence of ArcA that repressed expression of fimbriae and of gingipains. These data indicate that a functional motif of ArcA is sufficient to selectively alter virulence gene expression in P. gingivalis, and PGN_0294 and PGN_0806 may serve as receptors for ArcA. Our findings provide a molecular basis for future rational design of agents that interfere with the initiation and formation of a P. gingivalis-induced pathogenic community.