Oversampling Imbalanced Data Based on Convergent WGAN for Network Threat Detection
Class imbalance is a common problem in network threat detection. Oversampling the minority class is regarded as a popular countermeasure by generating enough new minority samples. Generative adversarial network (GAN) is a typical generative model that can generate any number of artificial minority s...
Guardado en:
Autores principales: | Yanping Xu, Xiaoyu Zhang, Zhenliang Qiu, Xia Zhang, Jian Qiu, Hua Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a3475a20f2243a9be0d3e6b5809238a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An oversampling method for multi-class imbalanced data based on composite weights.
por: Mingyang Deng, et al.
Publicado: (2021) -
An oversampling method for multi-class imbalanced data based on composite weights
por: Mingyang Deng, et al.
Publicado: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021) -
Economic Growth Prediction Algorithm of Coastal Area Based on Impulse Response Function
por: Qiu Rong-Shan, et al.
Publicado: (2021) -
Improving the Accuracy of Network Intrusion Detection with Causal Machine Learning
por: Zengri Zeng, et al.
Publicado: (2021)