Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>

ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kearney T. W. Gunsalus, Stephanie N. Tornberg-Belanger, Nirupa R. Matthan, Alice H. Lichtenstein, Carol A. Kumamoto
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://doaj.org/article/7a3a28dfc4074f4abe70b1ddc0c5e653
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7a3a28dfc4074f4abe70b1ddc0c5e653
record_format dspace
spelling oai:doaj.org-article:7a3a28dfc4074f4abe70b1ddc0c5e6532021-11-15T15:21:37ZManipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>10.1128/mSphere.00020-152379-5042https://doaj.org/article/7a3a28dfc4074f4abe70b1ddc0c5e6532016-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00020-15https://doaj.org/toc/2379-5042ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease. Podcast: A podcast concerning this article is available.Kearney T. W. GunsalusStephanie N. Tornberg-BelangerNirupa R. MatthanAlice H. LichtensteinCarol A. KumamotoAmerican Society for Microbiologyarticlemicrobiomecommensalpathogenesiscarbon metabolismCandidaCandida albicansMicrobiologyQR1-502ENmSphere, Vol 1, Iss 1 (2016)
institution DOAJ
collection DOAJ
language EN
topic microbiome
commensal
pathogenesis
carbon metabolism
Candida
Candida albicans
Microbiology
QR1-502
spellingShingle microbiome
commensal
pathogenesis
carbon metabolism
Candida
Candida albicans
Microbiology
QR1-502
Kearney T. W. Gunsalus
Stephanie N. Tornberg-Belanger
Nirupa R. Matthan
Alice H. Lichtenstein
Carol A. Kumamoto
Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>
description ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease. Podcast: A podcast concerning this article is available.
format article
author Kearney T. W. Gunsalus
Stephanie N. Tornberg-Belanger
Nirupa R. Matthan
Alice H. Lichtenstein
Carol A. Kumamoto
author_facet Kearney T. W. Gunsalus
Stephanie N. Tornberg-Belanger
Nirupa R. Matthan
Alice H. Lichtenstein
Carol A. Kumamoto
author_sort Kearney T. W. Gunsalus
title Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>
title_short Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>
title_full Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>
title_fullStr Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>
title_full_unstemmed Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen <named-content content-type="genus-species">Candida albicans</named-content>
title_sort manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen <named-content content-type="genus-species">candida albicans</named-content>
publisher American Society for Microbiology
publishDate 2016
url https://doaj.org/article/7a3a28dfc4074f4abe70b1ddc0c5e653
work_keys_str_mv AT kearneytwgunsalus manipulationofhostdiettoreducegastrointestinalcolonizationbytheopportunisticpathogennamedcontentcontenttypegenusspeciescandidaalbicansnamedcontent
AT stephanientornbergbelanger manipulationofhostdiettoreducegastrointestinalcolonizationbytheopportunisticpathogennamedcontentcontenttypegenusspeciescandidaalbicansnamedcontent
AT niruparmatthan manipulationofhostdiettoreducegastrointestinalcolonizationbytheopportunisticpathogennamedcontentcontenttypegenusspeciescandidaalbicansnamedcontent
AT alicehlichtenstein manipulationofhostdiettoreducegastrointestinalcolonizationbytheopportunisticpathogennamedcontentcontenttypegenusspeciescandidaalbicansnamedcontent
AT carolakumamoto manipulationofhostdiettoreducegastrointestinalcolonizationbytheopportunisticpathogennamedcontentcontenttypegenusspeciescandidaalbicansnamedcontent
_version_ 1718428137544482816