Leveraging vibration of effects analysis for robust discovery in observational biomedical data science.
Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing stra...
Guardado en:
Autores principales: | Braden T Tierney, Elizabeth Anderson, Yingxuan Tan, Kajal Claypool, Sivateja Tangirala, Aleksandar D Kostic, Arjun K Manrai, Chirag J Patel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a473add305f4aa796f527371dfa9008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators
por: Braden T. Tierney, et al.
Publicado: (2021) -
Using Cartesian Doubt To Build a Sequencing-Based View of Microbiology
por: Braden T. Tierney, et al.
Publicado: (2021) -
Leveraging network analysis to evaluate biomedical named entity recognition tools
por: Eduardo P. García del Valle, et al.
Publicado: (2021) -
Journal of biomedical discovery and collaboration
Publicado: (2006) -
SMM: Leveraging Metadata for Contextually Salient Multi-Variate Motif Discovery
por: Silvestro R. Poccia, et al.
Publicado: (2021)