Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.

Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Claudia Schurmann, Katharina Heim, Arne Schillert, Stefan Blankenberg, Maren Carstensen, Marcus Dörr, Karlhans Endlich, Stephan B Felix, Christian Gieger, Harald Grallert, Christian Herder, Wolfgang Hoffmann, Georg Homuth, Thomas Illig, Jochen Kruppa, Thomas Meitinger, Christian Müller, Matthias Nauck, Annette Peters, Rainer Rettig, Michael Roden, Konstantin Strauch, Uwe Völker, Henry Völzke, Simone Wahl, Henri Wallaschofski, Philipp S Wild, Tanja Zeller, Alexander Teumer, Holger Prokisch, Andreas Ziegler
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7a4ce423b51c479ebf1edb414f618a96
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7a4ce423b51c479ebf1edb414f618a96
record_format dspace
spelling oai:doaj.org-article:7a4ce423b51c479ebf1edb414f618a962021-11-18T08:06:02ZAnalyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.1932-620310.1371/journal.pone.0050938https://doaj.org/article/7a4ce423b51c479ebf1edb414f618a962012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23236413/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array.Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33-48% of the variance), the RNA amplification batch (12-24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2-3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1-2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency.In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses.Claudia SchurmannKatharina HeimArne SchillertStefan BlankenbergMaren CarstensenMarcus DörrKarlhans EndlichStephan B FelixChristian GiegerHarald GrallertChristian HerderWolfgang HoffmannGeorg HomuthThomas IlligJochen KruppaThomas MeitingerChristian MüllerMatthias NauckAnnette PetersRainer RettigMichael RodenKonstantin StrauchUwe VölkerHenry VölzkeSimone WahlHenri WallaschofskiPhilipp S WildTanja ZellerAlexander TeumerHolger ProkischAndreas ZieglerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 12, p e50938 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Claudia Schurmann
Katharina Heim
Arne Schillert
Stefan Blankenberg
Maren Carstensen
Marcus Dörr
Karlhans Endlich
Stephan B Felix
Christian Gieger
Harald Grallert
Christian Herder
Wolfgang Hoffmann
Georg Homuth
Thomas Illig
Jochen Kruppa
Thomas Meitinger
Christian Müller
Matthias Nauck
Annette Peters
Rainer Rettig
Michael Roden
Konstantin Strauch
Uwe Völker
Henry Völzke
Simone Wahl
Henri Wallaschofski
Philipp S Wild
Tanja Zeller
Alexander Teumer
Holger Prokisch
Andreas Ziegler
Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
description Microarray profiling of gene expression is widely applied in molecular biology and functional genomics. Experimental and technical variations make meta-analysis of different studies challenging. In a total of 3358 samples, all from German population-based cohorts, we investigated the effect of data preprocessing and the variability due to sample processing in whole blood cell and blood monocyte gene expression data, measured on the Illumina HumanHT-12 v3 BeadChip array.Gene expression signal intensities were similar after applying the log(2) or the variance-stabilizing transformation. In all cohorts, the first principal component (PC) explained more than 95% of the total variation. Technical factors substantially influenced signal intensity values, especially the Illumina chip assignment (33-48% of the variance), the RNA amplification batch (12-24%), the RNA isolation batch (16%), and the sample storage time, in particular the time between blood donation and RNA isolation for the whole blood cell samples (2-3%), and the time between RNA isolation and amplification for the monocyte samples (2%). White blood cell composition parameters were the strongest biological factors influencing the expression signal intensities in the whole blood cell samples (3%), followed by sex (1-2%) in both sample types. Known single nucleotide polymorphisms (SNPs) were located in 38% of the analyzed probe sequences and 4% of them included common SNPs (minor allele frequency >5%). Out of the tested SNPs, 1.4% significantly modified the probe-specific expression signals (Bonferroni corrected p-value<0.05), but in almost half of these events the signal intensities were even increased despite the occurrence of the mismatch. Thus, the vast majority of SNPs within probes had no significant effect on hybridization efficiency.In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses.
format article
author Claudia Schurmann
Katharina Heim
Arne Schillert
Stefan Blankenberg
Maren Carstensen
Marcus Dörr
Karlhans Endlich
Stephan B Felix
Christian Gieger
Harald Grallert
Christian Herder
Wolfgang Hoffmann
Georg Homuth
Thomas Illig
Jochen Kruppa
Thomas Meitinger
Christian Müller
Matthias Nauck
Annette Peters
Rainer Rettig
Michael Roden
Konstantin Strauch
Uwe Völker
Henry Völzke
Simone Wahl
Henri Wallaschofski
Philipp S Wild
Tanja Zeller
Alexander Teumer
Holger Prokisch
Andreas Ziegler
author_facet Claudia Schurmann
Katharina Heim
Arne Schillert
Stefan Blankenberg
Maren Carstensen
Marcus Dörr
Karlhans Endlich
Stephan B Felix
Christian Gieger
Harald Grallert
Christian Herder
Wolfgang Hoffmann
Georg Homuth
Thomas Illig
Jochen Kruppa
Thomas Meitinger
Christian Müller
Matthias Nauck
Annette Peters
Rainer Rettig
Michael Roden
Konstantin Strauch
Uwe Völker
Henry Völzke
Simone Wahl
Henri Wallaschofski
Philipp S Wild
Tanja Zeller
Alexander Teumer
Holger Prokisch
Andreas Ziegler
author_sort Claudia Schurmann
title Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
title_short Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
title_full Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
title_fullStr Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
title_full_unstemmed Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
title_sort analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/7a4ce423b51c479ebf1edb414f618a96
work_keys_str_mv AT claudiaschurmann analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT katharinaheim analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT arneschillert analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT stefanblankenberg analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT marencarstensen analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT marcusdorr analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT karlhansendlich analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT stephanbfelix analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT christiangieger analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT haraldgrallert analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT christianherder analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT wolfganghoffmann analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT georghomuth analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT thomasillig analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT jochenkruppa analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT thomasmeitinger analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT christianmuller analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT matthiasnauck analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT annettepeters analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT rainerrettig analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT michaelroden analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT konstantinstrauch analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT uwevolker analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT henryvolzke analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT simonewahl analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT henriwallaschofski analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT philippswild analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT tanjazeller analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT alexanderteumer analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT holgerprokisch analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
AT andreasziegler analyzingilluminageneexpressionmicroarraydatafromdifferenttissuesmethodologicalaspectsofdataanalysisinthemetaxpressconsortium
_version_ 1718422236934701056