Synthetic Source Universal Domain Adaptation through Contrastive Learning

Universal domain adaptation (UDA) is a crucial research topic for efficient deep learning model training using data from various imaging sensors. However, its development is affected by unlabeled target data. Moreover, the nonexistence of prior knowledge of the source and target domain makes it more...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Jungchan Cho
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/7a576453521840dfb764b12bf8684110
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!