Synthetic Source Universal Domain Adaptation through Contrastive Learning
Universal domain adaptation (UDA) is a crucial research topic for efficient deep learning model training using data from various imaging sensors. However, its development is affected by unlabeled target data. Moreover, the nonexistence of prior knowledge of the source and target domain makes it more...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7a576453521840dfb764b12bf8684110 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|