Synthetic Source Universal Domain Adaptation through Contrastive Learning
Universal domain adaptation (UDA) is a crucial research topic for efficient deep learning model training using data from various imaging sensors. However, its development is affected by unlabeled target data. Moreover, the nonexistence of prior knowledge of the source and target domain makes it more...
Guardado en:
Autor principal: | Jungchan Cho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a576453521840dfb764b12bf8684110 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-Time Cerebral Vessel Segmentation in Laser Speckle Contrast Image Based on Unsupervised Domain Adaptation
por: Heping Chen, et al.
Publicado: (2021) -
Contrastive Learning for 3D Point Clouds Classification and Shape Completion
por: Danish Nazir, et al.
Publicado: (2021) -
Domain Adaption Based on Symmetric Matrices Space Bi-Subspace Learning and Source Linear Discriminant Analysis Regularization
por: Qian Li, et al.
Publicado: (2021) -
Adaptive Deep Co-Occurrence Feature Learning Based on Classifier-Fusion for Remote Sensing Scene Classification
por: Ronald Tombe, et al.
Publicado: (2021) -
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Evgeny Zotov, et al.
Publicado: (2021)