Central and Periodic Multi-Scale Discrete Radon Transforms

The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Óscar Gómez-Cárdenes, José G. Marichal-Hernández, Jonas Phillip Lüke, José M. Rodríguez-Ramos
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
DRT
SFF
T
Acceso en línea:https://doaj.org/article/7a58b12650174ef4bdcab9c87319d975
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and fast, in spite of being iterative. In this work, the DRT forward and backward pair is evolved to propose two faster algorithms: central DRT, which computes only the central portion of intercepts; and periodic DRT, which computes the line integrals on the periodic extension of the input. Both have an output of size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, instead of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, as in the original algorithm. Periodic DRT is proven to have a fast inversion, whereas central DRT does not. An interesting application of periodic DRT is its use as building a block of discrete curvelet transform. Central DRT can provide almost a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo></mrow></semantics></math></inline-formula> speedup over conventional DRT, probably becoming the faster Radon transform algorithm available, at the cost of ignoring 15% of the summations in the corners.