Central and Periodic Multi-Scale Discrete Radon Transforms
The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and f...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a58b12650174ef4bdcab9c87319d975 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and fast, in spite of being iterative. In this work, the DRT forward and backward pair is evolved to propose two faster algorithms: central DRT, which computes only the central portion of intercepts; and periodic DRT, which computes the line integrals on the periodic extension of the input. Both have an output of size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, instead of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, as in the original algorithm. Periodic DRT is proven to have a fast inversion, whereas central DRT does not. An interesting application of periodic DRT is its use as building a block of discrete curvelet transform. Central DRT can provide almost a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo></mrow></semantics></math></inline-formula> speedup over conventional DRT, probably becoming the faster Radon transform algorithm available, at the cost of ignoring 15% of the summations in the corners. |
---|