Central and Periodic Multi-Scale Discrete Radon Transforms

The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Óscar Gómez-Cárdenes, José G. Marichal-Hernández, Jonas Phillip Lüke, José M. Rodríguez-Ramos
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
DRT
SFF
T
Acceso en línea:https://doaj.org/article/7a58b12650174ef4bdcab9c87319d975
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7a58b12650174ef4bdcab9c87319d975
record_format dspace
spelling oai:doaj.org-article:7a58b12650174ef4bdcab9c87319d9752021-11-25T16:32:57ZCentral and Periodic Multi-Scale Discrete Radon Transforms10.3390/app1122106062076-3417https://doaj.org/article/7a58b12650174ef4bdcab9c87319d9752021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/10606https://doaj.org/toc/2076-3417The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and fast, in spite of being iterative. In this work, the DRT forward and backward pair is evolved to propose two faster algorithms: central DRT, which computes only the central portion of intercepts; and periodic DRT, which computes the line integrals on the periodic extension of the input. Both have an output of size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, instead of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, as in the original algorithm. Periodic DRT is proven to have a fast inversion, whereas central DRT does not. An interesting application of periodic DRT is its use as building a block of discrete curvelet transform. Central DRT can provide almost a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo></mrow></semantics></math></inline-formula> speedup over conventional DRT, probably becoming the faster Radon transform algorithm available, at the cost of ignoring 15% of the summations in the corners.Óscar Gómez-CárdenesJosé G. Marichal-HernándezJonas Phillip LükeJosé M. Rodríguez-RamosMDPI AGarticlediscrete Radon transformDRTnumerical transformscurveletsSFFpruningTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10606, p 10606 (2021)
institution DOAJ
collection DOAJ
language EN
topic discrete Radon transform
DRT
numerical transforms
curvelets
SFF
pruning
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle discrete Radon transform
DRT
numerical transforms
curvelets
SFF
pruning
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Óscar Gómez-Cárdenes
José G. Marichal-Hernández
Jonas Phillip Lüke
José M. Rodríguez-Ramos
Central and Periodic Multi-Scale Discrete Radon Transforms
description The multi-scale discrete Radon transform (DRT) calculates, with linearithmic complexity, the summation of pixels, through a set of discrete lines, covering all possible slopes and intercepts in an image, exclusively with integer arithmetic operations. An inversion algorithm exists and is exact and fast, in spite of being iterative. In this work, the DRT forward and backward pair is evolved to propose two faster algorithms: central DRT, which computes only the central portion of intercepts; and periodic DRT, which computes the line integrals on the periodic extension of the input. Both have an output of size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, instead of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>N</mi><mo>×</mo><mn>4</mn><mi>N</mi></mrow></semantics></math></inline-formula>, as in the original algorithm. Periodic DRT is proven to have a fast inversion, whereas central DRT does not. An interesting application of periodic DRT is its use as building a block of discrete curvelet transform. Central DRT can provide almost a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo></mrow></semantics></math></inline-formula> speedup over conventional DRT, probably becoming the faster Radon transform algorithm available, at the cost of ignoring 15% of the summations in the corners.
format article
author Óscar Gómez-Cárdenes
José G. Marichal-Hernández
Jonas Phillip Lüke
José M. Rodríguez-Ramos
author_facet Óscar Gómez-Cárdenes
José G. Marichal-Hernández
Jonas Phillip Lüke
José M. Rodríguez-Ramos
author_sort Óscar Gómez-Cárdenes
title Central and Periodic Multi-Scale Discrete Radon Transforms
title_short Central and Periodic Multi-Scale Discrete Radon Transforms
title_full Central and Periodic Multi-Scale Discrete Radon Transforms
title_fullStr Central and Periodic Multi-Scale Discrete Radon Transforms
title_full_unstemmed Central and Periodic Multi-Scale Discrete Radon Transforms
title_sort central and periodic multi-scale discrete radon transforms
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/7a58b12650174ef4bdcab9c87319d975
work_keys_str_mv AT oscargomezcardenes centralandperiodicmultiscalediscreteradontransforms
AT josegmarichalhernandez centralandperiodicmultiscalediscreteradontransforms
AT jonasphillipluke centralandperiodicmultiscalediscreteradontransforms
AT josemrodriguezramos centralandperiodicmultiscalediscreteradontransforms
_version_ 1718413146062848000