Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir

This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fiki Hidayat, T. Mhd. Sofyan Astsauri
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/7a59ded17f7046b4944d61dbcc252692
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7a59ded17f7046b4944d61dbcc252692
record_format dspace
spelling oai:doaj.org-article:7a59ded17f7046b4944d61dbcc2526922021-12-02T04:59:37ZApplied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir1110-016810.1016/j.aej.2021.06.096https://doaj.org/article/7a59ded17f7046b4944d61dbcc2526922022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1110016821004579https://doaj.org/toc/1110-0168This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection Temperature, Volume Injection, Formation Water Composition, and Injection Water Composition were build using Design of Experiment on CMOST from Computer Modeling Group with Recovery Factor as the response parameter. Finally, the sensitivity analysis is carried out on Random Forest Regressor based on the decrease in the mean squared error (MSE). The Random Forest Algorithm methods respectively recognized Injection SO42- Composition, Formation Water SO42-Composition dan Volume Injection as the top three of most significant parameters. Five variations of the random state value are applied and the hyperparameters of Random Forest also optimized. Both training and test data, the R2 score respectively are consistently over 0.9 for 5 variations of the random state used. The information about the significant operation parameter of the LSWI process presented in this article is potential bearing the novel to the industry. The insight into those parameters is predicted to be useful to encourage the LSWI implementation on Carbonate Reservoir.Fiki HidayatT. Mhd. Sofyan AstsauriElsevierarticleLow salinity water injection (LSWI)Carbonate ReservoirSensitivity AnalysisRandom Forest AlgorithmEngineering (General). Civil engineering (General)TA1-2040ENAlexandria Engineering Journal, Vol 61, Iss 3, Pp 2408-2417 (2022)
institution DOAJ
collection DOAJ
language EN
topic Low salinity water injection (LSWI)
Carbonate Reservoir
Sensitivity Analysis
Random Forest Algorithm
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Low salinity water injection (LSWI)
Carbonate Reservoir
Sensitivity Analysis
Random Forest Algorithm
Engineering (General). Civil engineering (General)
TA1-2040
Fiki Hidayat
T. Mhd. Sofyan Astsauri
Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
description This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection Temperature, Volume Injection, Formation Water Composition, and Injection Water Composition were build using Design of Experiment on CMOST from Computer Modeling Group with Recovery Factor as the response parameter. Finally, the sensitivity analysis is carried out on Random Forest Regressor based on the decrease in the mean squared error (MSE). The Random Forest Algorithm methods respectively recognized Injection SO42- Composition, Formation Water SO42-Composition dan Volume Injection as the top three of most significant parameters. Five variations of the random state value are applied and the hyperparameters of Random Forest also optimized. Both training and test data, the R2 score respectively are consistently over 0.9 for 5 variations of the random state used. The information about the significant operation parameter of the LSWI process presented in this article is potential bearing the novel to the industry. The insight into those parameters is predicted to be useful to encourage the LSWI implementation on Carbonate Reservoir.
format article
author Fiki Hidayat
T. Mhd. Sofyan Astsauri
author_facet Fiki Hidayat
T. Mhd. Sofyan Astsauri
author_sort Fiki Hidayat
title Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
title_short Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
title_full Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
title_fullStr Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
title_full_unstemmed Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
title_sort applied random forest for parameter sensitivity of low salinity water injection (lswi) implementation on carbonate reservoir
publisher Elsevier
publishDate 2022
url https://doaj.org/article/7a59ded17f7046b4944d61dbcc252692
work_keys_str_mv AT fikihidayat appliedrandomforestforparametersensitivityoflowsalinitywaterinjectionlswiimplementationoncarbonatereservoir
AT tmhdsofyanastsauri appliedrandomforestforparametersensitivityoflowsalinitywaterinjectionlswiimplementationoncarbonatereservoir
_version_ 1718400896466944000