Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a59ded17f7046b4944d61dbcc252692 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7a59ded17f7046b4944d61dbcc252692 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7a59ded17f7046b4944d61dbcc2526922021-12-02T04:59:37ZApplied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir1110-016810.1016/j.aej.2021.06.096https://doaj.org/article/7a59ded17f7046b4944d61dbcc2526922022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1110016821004579https://doaj.org/toc/1110-0168This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection Temperature, Volume Injection, Formation Water Composition, and Injection Water Composition were build using Design of Experiment on CMOST from Computer Modeling Group with Recovery Factor as the response parameter. Finally, the sensitivity analysis is carried out on Random Forest Regressor based on the decrease in the mean squared error (MSE). The Random Forest Algorithm methods respectively recognized Injection SO42- Composition, Formation Water SO42-Composition dan Volume Injection as the top three of most significant parameters. Five variations of the random state value are applied and the hyperparameters of Random Forest also optimized. Both training and test data, the R2 score respectively are consistently over 0.9 for 5 variations of the random state used. The information about the significant operation parameter of the LSWI process presented in this article is potential bearing the novel to the industry. The insight into those parameters is predicted to be useful to encourage the LSWI implementation on Carbonate Reservoir.Fiki HidayatT. Mhd. Sofyan AstsauriElsevierarticleLow salinity water injection (LSWI)Carbonate ReservoirSensitivity AnalysisRandom Forest AlgorithmEngineering (General). Civil engineering (General)TA1-2040ENAlexandria Engineering Journal, Vol 61, Iss 3, Pp 2408-2417 (2022) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Low salinity water injection (LSWI) Carbonate Reservoir Sensitivity Analysis Random Forest Algorithm Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
Low salinity water injection (LSWI) Carbonate Reservoir Sensitivity Analysis Random Forest Algorithm Engineering (General). Civil engineering (General) TA1-2040 Fiki Hidayat T. Mhd. Sofyan Astsauri Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir |
description |
This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection Temperature, Volume Injection, Formation Water Composition, and Injection Water Composition were build using Design of Experiment on CMOST from Computer Modeling Group with Recovery Factor as the response parameter. Finally, the sensitivity analysis is carried out on Random Forest Regressor based on the decrease in the mean squared error (MSE). The Random Forest Algorithm methods respectively recognized Injection SO42- Composition, Formation Water SO42-Composition dan Volume Injection as the top three of most significant parameters. Five variations of the random state value are applied and the hyperparameters of Random Forest also optimized. Both training and test data, the R2 score respectively are consistently over 0.9 for 5 variations of the random state used. The information about the significant operation parameter of the LSWI process presented in this article is potential bearing the novel to the industry. The insight into those parameters is predicted to be useful to encourage the LSWI implementation on Carbonate Reservoir. |
format |
article |
author |
Fiki Hidayat T. Mhd. Sofyan Astsauri |
author_facet |
Fiki Hidayat T. Mhd. Sofyan Astsauri |
author_sort |
Fiki Hidayat |
title |
Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir |
title_short |
Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir |
title_full |
Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir |
title_fullStr |
Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir |
title_full_unstemmed |
Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir |
title_sort |
applied random forest for parameter sensitivity of low salinity water injection (lswi) implementation on carbonate reservoir |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://doaj.org/article/7a59ded17f7046b4944d61dbcc252692 |
work_keys_str_mv |
AT fikihidayat appliedrandomforestforparametersensitivityoflowsalinitywaterinjectionlswiimplementationoncarbonatereservoir AT tmhdsofyanastsauri appliedrandomforestforparametersensitivityoflowsalinitywaterinjectionlswiimplementationoncarbonatereservoir |
_version_ |
1718400896466944000 |