Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir
This study applied a Machine Learning Algorithm based on Random Forest Regression for eliminating the insignificant parameter and evaluating the correlation between each parameter and response parameter on the LSWI process. 1000 experimental designs of LSWI parameters, Reservoir & Injection...
Guardado en:
Autores principales: | Fiki Hidayat, T. Mhd. Sofyan Astsauri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7a59ded17f7046b4944d61dbcc252692 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Geochemical evaluation of low salinity hot water injection to enhance heavy oil recovery from carbonate reservoirs
por: Ji Ho Lee, et al.
Publicado: (2018) -
Strategy of water-flooding enhancement for low-permeable polymictic reservoirs
por: Palyanitsina Aleksandra, et al.
Publicado: (2021) -
Efficiency of enhanced oil recovery by injection of low-salinity water in barium-containing carbonate reservoirs
por: Hyemin Park, et al.
Publicado: (2018) -
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir
por: Min Wang, et al.
Publicado: (2018) -
Performance of low-salinity water flooding for enhanced oil recovery improved by SiO2 nanoparticles
por: Tangestani Ebrahim, et al.
Publicado: (2019)